
1

Saint Louis University

Machine-Level Programming I –
 Introduction

CSCI 2400: Computer Architecture

Instructor:

David Ferry

Slides adapted from Bryant & O’Hallaron’s slides
via Jason Fritts

2

Saint Louis University

Turning a corner…

Course theme:

 Low level (machine level) operation of a processor

What we’ve seen so far:

 Bit-level representation of data
 int, unsigned, char, float, double

 Strings (arrays)

 Bit-level operations on data
 Arithmetic (+, -, *, /, %)

 Bitwise (&, |, ^, ~, <<, >>)

 We’ve done data at a low level, what about programs?

3

Saint Louis University

State of the Course

Past:

 Machine organization

 Data representation

 Data operations

 Intro to C and Linux

Future:

 Program representation (assembly language)

 Program execution

 Processor architecture / organization

 Memory and cache architecture / organization

4

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture vs. Hardware Architecture

 Common Architecture Classifications

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Registers and Operands

 mov instruction

 Intro to x86-64
 AMD was first!

5

Saint Louis University

CPU

Assembly Programmer’s View

 Programmer-Visible State

 PC: Program counter

 Holds address of next instruction

 Register file

 Temp storage for program data

 Condition codes

 Store status info about recent operation

 Used for conditional branching

PC

Registers

Memory

Object Code
Program Data
OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

 Memory
 Byte addressable array

 Code, user data, (some) OS data

 Includes stack used to support
procedures

Processor
implementation
(not visible)

6

Saint Louis University

Hardware vs. Software Architecture

 There are two parts to the computer architecture of a
processor:
 Software architecture

 known as the Architecture or Instruction Set Architecture (ISA)

 Hardware architecture
 known as the Microarchitecture

 a hardware architecture implements an ISA

 The (software) architecture includes all aspects of the
design that are visible to programmers

 The microarchitecture refers to one specific implementation
of a software architecture
 e.g. number of cores, processor frequency, cache sizes, etc.

 the set of all independent hardware architectures for a given
software architecture is known as the processor family
 e.g. the Intel x86 family

7

Saint Louis University

Separation of hardware and software

 The reason for the separation of the (software) architecture
from the microarchitecture (hardware) is backwards
compatibility

 Backwards compatibility ensures:
 software written on older processors will run on newer processors (of

the same ISA)

 processor families can always utilize the latest technology by creating
new hardware architectures (for the same ISA)

 However, new microarchitectures often add to the
(software) architecture, so software written on newer
processors may not run on older processors

8

Saint Louis University

Example Parts of the ISA

 Register file
 Fast, on-processor data storage, very limited
 On Hopper:
 14 general purpose registers (rax, rbc, rcx, rdx, rsi, rdi, and r8-r15)
 Two stack registers (rbp, rsp)
 Instruction pointer (rip)
 Flags register (eflags)

 Instruction set

 The set of available instructions
 movl – moves 32-bit data (“movl %edx, %eax” moves %edx to %eax)
 addl – adds two 32-bit operands (“addl %eax, %ebx” adds %eax to %ebx)
 call – call a function

 These instructions map directly to binary machine code!

9

Saint Louis University

Parts of the Software Architecture

 There are 4 parts to the (software) architecture
 processor instruction set

 the set of available instructions and the rules for using them

 register file organization
 the number, size, and rules for using registers

 memory organization & addressing
 the organization of the memory and the rules for accessing data

 operating modes
 the various modes of execution for the processor
 there are usually at least two modes:

– user mode (for general use)
– system mode (allows access to privileged instructions

 and memory)

10

Saint Louis University

Software Architecture: Instruction Set

 The Instruction Set defines

 the set of available instructions

 fundamental nature of the instructions
 simple and fast (how many cycles?)

 complex and concise

 instruction formats
 define the rules for using the instructions

 the width (in bits) of the datapath
 this defines the fundamental size of data in the CPU, including:

– the size (number of bits) for the data buses in the CPU

– the number of bits per register in the register file

– the width of the processing units

– the number of address bits for accessing memory

11

Saint Louis University

Software Architecture: Instruction Set

 There are 9 fundamental categories of instructions
 arithmetic

 these instruction perform integer arithmetic, such as add, subtract,
multiply, and negate

– Note: integer division is commonly done in software

 logical
 these instructions perform Boolean logic (AND, OR, NOT, etc.)

 relational
 these instructions perform comparisons, including

 ==, !=, <, >, <=, >=
 some ISAs perform comparisons in the conditional branches

 control
 these instructions enable changes in control flow, both for decision

making and modularity
 the set of control instruction includes:

– conditional branches
– unconditional jumps
– procedure calls and returns

12

Saint Louis University

Software Architecture: Instruction Set
 memory

 these instructions allow data to be read from or written to memory

 floating-point
 these instruction perform real-number operations, including add,

subtract, multiply, division, comparisons, and conversions

 shifts
 these instructions allow bits to be shifted or rotated left or right

 bit manipulation
 these instructions allow data bits to be set or cleared
 some ISAs do not provide these, since they can be done via logic

instructions

 system instructions
 specialized instructions for system control purposes, such as

– STOP or HALT (stop execution)
– cache hints
– interrupt handling

 some of these instructions are privileged, requiring system mode

13

Saint Louis University

Software Architecture: Register File

 The Register File is a small, fast temporary storage area in
the processor’s CPU
 it serves as the primary place for holding data values currently

being operated upon by the CPU

 The organization of the register file determines
 the number of registers

 a large number of registers is desirable, but having too many will
negatively impact processor speed

 the number of bits per register

 this is equivalent to the width of the datapath

 the purpose of each register

 ideally, most registers should be general-purpose

 however, some registers serve specific purposes

14

Saint Louis University

Purpose of Register File

 Registers are much faster to access than memory
 Time to access a local register: ~1 CPU cycle

 Time to access memory (RAM): hundreds to thousands of CPU cycles

 Operating on memory data requires loads and stores
 More instructions to be executed

 Compilers store values in registers whenever possible
 Only spill to memory for less frequently used variables

 Register optimization is important!

15

Saint Louis University

Software Architecture: Memory

 The Memory Organization & Addressing defines
 how memory is organized in the architecture

 where data and program memory are unified or separate

 the amount of addressable memory

– usually determined by the datapath width

 the number of bytes per address

– most processors are byte-addressable, so each byte has a unique addr

 whether it employs virtual memory, or just physical memory

– virtual memory is usually required in complex computer systems,
like desktops, laptops, servers, tablets, smart phones, etc.

– simpler systems use embedded processors with only physical memory

 rules identifying how instructions access data in memory

 what instructions may access memory (usually only loads, stores)

 what addressing modes are supported

 the ordering and alignment rules for multi-byte primitive data types

16

Saint Louis University

Software Architecture: Operating Modes

 Operating Modes define the processor’s modes of execution

 The ISA typically supports at least two operating modes

 user mode
 this is the mode of execution for typical use

 system mode
 allows access to privileged instructions and memory

 aside from interrupt and exception handling, system mode is
typically only available to system programmers and administrators

 used to implement operating system privilieges

 Processors also generally have hardware testing modes, but
these are usually part of the microarchitecture, not the
(software) architecture

17

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture vs. Hardware Architecture

 Common Architecture Classifications

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Registers

 Operands

 mov instruction

 Intro to x86-64
 AMD was first!

18

Saint Louis University

Common Architecture (ISA) Classifications:

 CISC – Complex Instruction Set
Computers

 complex instructions
targeting efficient program
representation

 variable-length instructions

 versatile addressing modes

 specialized instructions and
registers implement
complex tasks

 NOT optimized for speed –
tend to be SLOW

 RISC – Reduced Instruction Set
Computers

 small set of simple
instructions targeting high
speed implementation

 fixed-length instructions

 simple addressing modes

 many general-purpose
registers

 leads to FAST hardware
implementations

 but less memory efficient

Concise vs. Fast: CISC vs. RISC

19

Saint Louis University

Is x86 CISC? How does it get speed?

 Hard to match RISC performance, but Intel has done just that!
 ….In terms of speed; less so for power

 CISC instruction set makes implementation difficult
 Hardware translates instructions to simpler micro-operations

 simple instructions: 1–to–1

 complex instructions: 1–to–many

 Micro-engine similar to RISC

 Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid CISC instructions

20

Saint Louis University

Classifications: Unified vs. Separate Memory

 von Neumann vs. Harvard architecture
 relates to whether program and data in unified or separate memory

 von Neumann architecture

 program and data are stored in the same unified memory space

 requires only one physical memory

 allows self-modifying code

 however, code and data must share the same memory bus

 used by most general-purpose processors (e.g. Intel x86)

 Harvard architecture

 program and data are stored in separate memory spaces

 requires separate physical memory

 code and data do not share same bus, giving higher bandwidths

 often used by digital signal processors for data-intensive applications

21

Saint Louis University

Classifications: Performance vs. Specificity

 Microprocessor vs. Microcontroller
 Microprocessor

 processors designed for high-performance and flexibility in personal
computers and other general purpose applications

 architectures target high performance through a combination of
high speed and parallelism

 processor chip contains only CPU(s) and cache

 no peripherals included on-chip

 Microcontroller

 processors designed for specific purposes in embedded systems

 only need performance sufficient to needs of that application

 processor chip generally includes:
– a simple CPU

– modest amounts of RAM and (Flash) ROM

– appropriate peripherals needed for specific application

 also often need to meet low power and/or real-time requirements

22

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture vs. Hardware Architecture

 Common Architecture Classifications

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Registers

 Operands

 mov instruction

 Intro to x86-64
 AMD was first!

23

Saint Louis University

Intel x86 Processors

 The main software architecture for Intel is the x86 ISA
 also known as IA-32
 for 64-bit processors, it is known as x86-64

 Totally dominate laptop/desktop/server market

 Evolutionary design
 Backwards compatible back to 8086, introduced in 1978

 Added more features as time goes on

 Complex instruction set computer (CISC)
 Many different instructions with many different formats

 but, only small subset used in Linux programs

24

Saint Louis University

Intel x86 Family: Many Microarchitectures

X86-64 / Intel 64

X86-32 / IA32

X86-16 8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Core i7

IA: often redefined as latest Intel architecture

Architectures Processors

MMX

SSE

SSE2

SSE3

SSE4

1978

1985

1993

2000

2006

2010

2004 time

25

Saint Louis University

Software architecture can grow
 Backward compatibility does not mean instruction set is fixed

 new instructions and functionality can be added to the software
architecture over time

 Intel added additional features over time
 Instructions to support multimedia operations (MMX, SSE)

 SIMD parallelism – same operation done across multiple data

 Instructions enabling more efficient conditional operations

x86 instruction set

26

Saint Louis University

Intel x86: Milestones & Trends
 Name Date Transistors MHz

 8086 1978 29K 5-10
 First 16-bit processor. Basis for IBM PC & DOS

 1MB address space

 386 1985 275K 16-33
 First 32 bit processor, referred to as IA32

 Added “flat addressing”

 Pentium 1993 3.1M 50-75

 Pentium II 1996 7.5M 233-300

 Pentium III 1999 9.5-21M 450-800

 Pentium 4F 2004 169M 3200-3800
 First Intel 64-bit processor

 Got very hot (up to 115 watts!)

 Core i7 2008 731M 2667-3333

27

Saint Louis University

Intel’s 64-Bit History
 2001: Intel Attempts Radical Shift from IA32 to IA64

 Totally different architecture (Itanium)

 Executes IA32 code only as legacy

 Performance disappointing

 2003: AMD Steps in with Evolutionary Solution
 x86-64 (now called “AMD64”)

 Intel Felt Obligated to Focus on IA64
 Hard to admit mistake or that AMD is better

 2004: Intel Announces EM64T extension to IA32
 Extended Memory 64-bit Technology

 Almost identical to x86-64!

 All but low-end x86 processors support x86-64
 But, lots of code still runs in 32-bit mode

28

Saint Louis University

Processor
Trends

 Number of transistors has continued to double every 2 years

 In 2004 – we hit the Power Wall
 Processor clock speeds started to leveled off

 Recently – multi-cores have hit the Memory Wall

29

Saint Louis University

2017 State of the Art
 Core i7 Kaby Lake 2017

 Xeon E7-8890V4 2016

 Desktop Model
 4 cores

 Integrated graphics

 2.9-4.2 GHz

 35, 65, 91W

 Server Model
 24 cores

 Integrated I/O

 2.2-3.4 GHz

 165W

 $10,000

30

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture (“Architecture” or “ISA”)
 vs.

 Hardware Architecture (“Microarchitecture”)

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Registers

 Operands

 mov instruction

 Intro to x86-64
 AMD was first!

31

Saint Louis University

text

text

binary

binary

Compiler (gcc –S –m32)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in separate translation units: p1.c p2.c

 Compile with command: gcc –O1 –m32 p1.c p2.c -o p

 Use basic optimizations (-O1)

 Put resulting binary in file p

 On 64-bit machines, specify 32-bit x86 code (-m32)

32

Saint Louis University

Compiling Into Assembly

C Code

 int sum(int x, int y)

{

 int t = x+y;

 return t;

}

Generated IA32 Assembly
 sum:

 pushl %ebp

 movl %esp,%ebp

 movl 12(%ebp),%eax

 addl 8(%ebp),%eax

 popl %ebp

 ret

Obtain with command:

 gcc –O1 -S –m32 code.c

-S specifies compile to assembly (vs object) code, and
 produces file code.s

Some compilers use
instruction “leave”

33

Saint Louis University

Assembly Characteristics: Simple Types

 Integer data of 1, 2, or 4 bytes
 Data values

 Addresses (void* pointers)

 Floating point data of 4, 8, or 10 bytes

 No concept of aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

34

Saint Louis University

Assembly Characteristics: Operations

 Perform some operation on register or memory data
 arithmetic

 logical

 bit shift or manipulation

 comparison (relational)

 Transfer data between memory and register
 Load data from memory into register

 Store register data into memory

 Transfer control
 Unconditional jumps to/from procedures

 Conditional branches

35

Saint Louis University

Code for sum
 0x401040 <sum>:
 0x55

 0x89

 0xe5

 0x8b

 0x45

 0x0c

 0x03

 0x45

 0x08

 0x5d

 0xc3

Object Code
 Assembler

 Translates .s into .o

 Binary encoding of each instruction

 Nearly-complete image of executable code

 Missing linkages between code in different
files

 Linker
 Resolves references between files

 Combines with static run-time libraries

 E.g., code for malloc, printf

 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 11 bytes

• Each instruction
1, 2, or 3 bytes

• Starts at address
0x401040

36

Saint Louis University

Machine Instruction Example
 C Code

 Add two signed integers

 Assembly
 Add 2 4-byte integers

 “Long” words in GCC parlance

 Same instruction whether signed
or unsigned

 Operands:

x: Register %eax

y: Memory M[%ebp+8]

t: Register %eax

– Return function value in %eax

 Object Code
 3-byte instruction

 Stored at address 0x80483ca

int t = x+y;

addl 8(%ebp),%eax

0x80483ca: 03 45 08

Similar to expression:

x += y

More precisely:

int eax;

int *ebp;

eax += ebp[2]

37

Saint Louis University

Disassembled

Disassembling Object Code

 Disassembler
objdump -d p

 Useful tool for examining object code

 Analyzes bit pattern of series of instructions

 Produces approximate rendition of assembly code

 Can be run on either a.out (complete executable) or .o file

080483c4 <sum>:

 80483c4: 55 push %ebp

 80483c5: 89 e5 mov %esp,%ebp

 80483c7: 8b 45 0c mov 0xc(%ebp),%eax

 80483ca: 03 45 08 add 0x8(%ebp),%eax

 80483cd: 5d pop %ebp

 80483ce: c3 ret

38

Saint Louis University

Disassembled

Dump of assembler code for function sum:

0x080483c4 <sum+0>: push %ebp

0x080483c5 <sum+1>: mov %esp,%ebp

0x080483c7 <sum+3>: mov 0xc(%ebp),%eax

0x080483ca <sum+6>: add 0x8(%ebp),%eax

0x080483cd <sum+9>: pop %ebp

0x080483ce <sum+10>: ret

Alternate Disassembly

 Within gdb Debugger
gdb p

disassemble sum

 Disassemble procedure

x/11xb sum

 Examine the 11 bytes starting at sum

Object
 0x401040:
 0x55

 0x89

 0xe5

 0x8b

 0x45

 0x0c

 0x03

 0x45

 0x08

 0x5d

 0xc3

39

Saint Louis University

What Can be Disassembled?

 Anything that can be interpreted as executable code

 Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

40

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture vs. Hardware Architecture

 Common Architecture Classifications

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Common instructions

 Registers, Operands, and mov instruction

 Addressing modes

 Intro to x86-64
 AMD was first!

41

Saint Louis University

World-wary aside: Instruction Syntax

Two prevalent assembler syntaxes:

 AT&T syntax
 Aka GNU Assembler syntax, aka GAS syntax

 Dominant in Unix/Linux world

 Subject of this class

 E.g.: movl $5, %eax

 E.g.: movl 8(%ebp), %eax

 Intel Syntax
 Aka Microsoft Assembler syntax, aka MASM syntax

 Dominant in Microsoft world

 E.g.: mov eax, 5

 E.g.: mov eax, [ebp + 8]

42

Saint Louis University

Typical Instructions in Intel x86

 Arithmetic
 add, sub, neg, imul, div, inc, dec, leal, …

 Logical (bit-wise Boolean)
 and, or, xor, not

 Relational
 cmp, test, sete, …

 Control
 je, jle, jg, jb, jmp, call, ret, …

 Moves & Memory Access
 mov, push, pop, movswl, movzbl, cmov, …
 nearly all x86 instructions can access memory

 Shifts
 shr, sar, shl, sal (same as shl)

 Floating-point
 fld, fadd, fsub, fxch, addsd, movss, cvt…, ucom…

 float-point change completely with x86-64

43

Saint Louis University

CISC Instructions: Variable-Length

44

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture (“Architecture” or “ISA”)
 vs.

 Hardware Architecture (“Microarchitecture”)

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Common instructions

 Registers, Operands, and mov instruction

 Addressing modes

 Intro to x86-64
 AMD was first!

45

Saint Louis University

Integer Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source

index

destination

index

stack

pointer

base

pointer

Origin
(mostly obsolete)

46

Saint Louis University

Moving Data: IA32
 Moving Data

 movl Source, Dest

 Operand Types
 Immediate: Constant integer data

 example: $0x400, $-533

 like C constant, but prefixed with ‘$’

 encoded with 1, 2, or 4 bytes

 Register: One of 8 integer registers

 example: %eax, %edx

 but %esp and %ebp reserved for special use

 others have special uses in particular situations

 Memory: 4 consecutive bytes of memory at address given by register

 simplest example: (%eax)

 various other “address modes”

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

47

Saint Louis University

movl Operand Combinations

Cannot do memory-memory transfer with a single instruction

movl

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Dest C Analog

movl $0x4,%eax temp = 0x4;

movl $-147,(%eax) *p = -147;

movl %eax,%edx temp2 = temp1;

movl %eax,(%edx) *p = temp;

movl (%eax),%edx temp = *p;

Src, Dest

48

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture (“Architecture” or “ISA”)
 vs.

 Hardware Architecture (“Microarchitecture”)

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Common instructions

 Registers, Operands, and mov instruction

 Addressing modes

 Intro to x86-64
 AMD was first!

49

Saint Louis University

Simple Memory Addressing Modes

 Normal:
 (R) Mem[Reg[R]]

 Register R specifies memory address

 movl (%ecx),%eax

 Displacement:
 D(R) Mem[Reg[R]+D]

 Register R specifies start of memory region

 Constant displacement D specifies offset

 movl 8(%ebp),%edx

50

Saint Louis University

Using Simple Addressing Modes

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

} Body

Set
Up

Finish

swap:

 pushl %ebx

 movl 8(%esp), %edx

 movl 12(%esp), %eax

 movl (%edx), %ecx

 movl (%eax), %ebx

 movl %ebx, (%edx)

 movl %ecx, (%eax)

 popl %ebx

 ret

51

Saint Louis University

Using Simple Addressing Modes

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

swap:

 pushl %ebx

 movl 8(%esp), %edx

 movl 12(%esp), %eax

 movl (%edx), %ecx

 movl (%eax), %ebx

 movl %ebx, (%edx)

 movl %ecx, (%eax)

 popl %ebx

 ret

Body

Set
Up

Finish

52

Saint Louis University

Understanding Swap

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

Stack
(in memory)

Register Value

%edx xp

%ecx yp

%ebx t0

%eax t1

yp

xp

Rtn adr

Old %ebx %esp 0

 4

 8

12

Offset

•
•
•

 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

53

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

 4

 8

12

Offset

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104
 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

54

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

 4

 8

12

Offset

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x104
 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

0x124

55

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

 4

 8

12

Offset

123

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104

0x124

 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

0x120

56

Saint Louis University

456

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

 4

 8

12

Offset

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

123

0x104

0x120

 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

123

57

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

 4

 8

12

Offset

123

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x124

123

0x104

456

 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

456

58

Saint Louis University

456

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

 4

 8

12

Offset

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104

0x120

0x124

123

456

 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

456

59

Saint Louis University

Understanding Swap

0x120

0x124

Rtn adr

%esp 0

 4

 8

12

Offset

456

Address
0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104

0x120

0x124

123

456

 movl 8(%esp), %edx # edx = xp

 movl 12(%esp), %eax # eax = yp

 movl (%edx), %ecx # ecx = *xp (t0)

 movl (%eax), %ebx # ebx = *yp (t1)

 movl %ebx, (%edx) # *xp = t1

 movl %ecx, (%eax) # *yp = t0

123

60

Saint Louis University

Complete Memory Addressing Modes

 Most General Form

 D(Rb,Ri,S) Mem[Reg[Rb] + S * Reg[Ri] + D]

 D: Constant “displacement” 1, 2, or 4 bytes

 Rb: Base register: Any of 8 integer registers

 Ri: Index register: Any, except for %esp (likely not %ebp either)

 S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases

 (Rb,Ri) Mem[Reg[Rb] + Reg[Ri]]

 D(Rb,Ri) Mem[Reg[Rb] + Reg[Ri] + D]

 (Rb,Ri,S) Mem[Reg[Rb]+ S * Reg[Ri]]

62

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture vs. Hardware Architecture

 Common Architecture Classifications

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Common instructions

 Registers, Operands, and mov instruction

 Addressing modes

 Intro to x86-64
 AMD was first!

63

Saint Louis University

AMD created first 64-bit version of x86

 Historically
AMD has followed just behind Intel

A little bit slower, a lot cheaper

 2003, developed 64-bit version of x86: x86-64
Recruited top circuit designers from DEC and other diminishing companies

Built Opteron: tough competitor to Pentium 4

64

Saint Louis University

Intel’s 64-Bit

 Intel Attempted Radical Shift from IA32 to IA64
 Totally different architecture (Itanium)

 Executes IA32 code only as legacy

 Performance disappointing

 2003: AMD Stepped in with Evolutionary Solution
 Originally called x86-64 (now called AMD64)

 2004: Intel Announces their 64-bit extension to IA32
 Originally called EMT64 (now called Intel 64)

 Almost identical to x86-64!

 Collectively known as x86-64
 minor differences between the two

65

Saint Louis University

Data Representations: IA32 vs. x86-64

 Sizes of C Objects (in bytes)
 C Data Type Intel IA32 x86-64

 unsigned 4 4

 int 4 4

 long int 4 8

 char 1 1

 short 2 2

 float 4 4

 double 8 8

 long double 10/12 16

 pointer (e.g. char *) 4 8

66

Saint Louis University

x86-64 Integer Registers

 Up to 6 function arguments are passed via registers

 Explicitly makes %ebp/%rbp general purpose

%rsp

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

67

Saint Louis University

New Instructions for 64-bit Operands

 Long word l (4 Bytes) ↔ Quad word q (8 Bytes)

 New instructions:
 movl => movq

 addl => addq

 sall => salq

 etc.

 32-bit instructions that generate 32-bit results
 Set higher order bits of destination register to 0

 Example: addl

68

Saint Louis University

32-bit code for int swap

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}
Body

Set
Up

Finish

swap:

 pushl %ebx

 movl 8(%esp), %edx

 movl 12(%esp), %eax

 movl (%edx), %ecx

 movl (%eax), %ebx

 movl %ebx, (%edx)

 movl %ecx, (%eax)

 popl %ebx

 ret

69

Saint Louis University

64-bit code for int swap

 Operands passed in registers (why useful?)
 First input arg (xp) in %rdi, second input arg (yp) in %rsi

 64-bit pointers

 No stack operations required

 32-bit ints held temporarily in %eax and %edx

void swap(int *xp, int *yp)

{

 int t0 = *xp;

 int t1 = *yp;

 *xp = t1;

 *yp = t0;

}

Body

Set
Up

Finish

swap:

 movl (%rdi), %edx

 movl (%rsi), %eax

 movl %eax, (%rdi)

 movl %edx, (%rsi)

 ret

70

Saint Louis University

64-bit code for long int swap

 64-bit long ints
 Pass input arguments in registers %rax and %rdx

 movq operation

 “q” stands for quad-word

void swap(long *xp, long *yp)

{

 long t0 = *xp;

 long t1 = *yp;

 *xp = t1;

 *yp = t0;

}

Body

Set
Up

Finish

swap_l:

 movq (%rdi), %rdx

 movq (%rsi), %rax

 movq %rax, (%rdi)

 movq %rdx, (%rsi)

 ret

71

Saint Louis University

Machine Programming I – Basics

 Instruction Set Architecture
 Software Architecture vs. Hardware Architecture

 Common Architecture Classifications

 The Intel x86 ISA – History and Microarchitectures

 Dive into C, Assembly, and Machine code

 The Intel x86 Assembly Basics:
 Common instructions

 Registers, Operands, and mov instruction

 Addressing modes

 Intro to x86-64
 AMD was first!

72

Saint Louis University

Machine Programming I – Summary

 Instruction Set Architecture
 Many different varieties and features of processor architectures

 Separation of (software) Architecture and Microarchitecture is key for
backwards compatibility

 The Intel x86 ISA – History and Microarchitectures
 Evolutionary design leads to many quirks and artifacts

 Dive into C, Assembly, and Machine code
 Compiler must transform statements, expressions, procedures into

low-level instruction sequences

 The Intel x86 Assembly Basics:
 The x86 move instructions cover wide range of data movement forms

 Intro to x86-64
 A major departure from the style of code seen in IA32

