Data Representation – Floating Point

CSCI 2400 / ECE 3217: Computer Architecture

Instructor:

David Ferry

Slides adapted from Bryant & O'Hallaron's slides via Jason Fritts

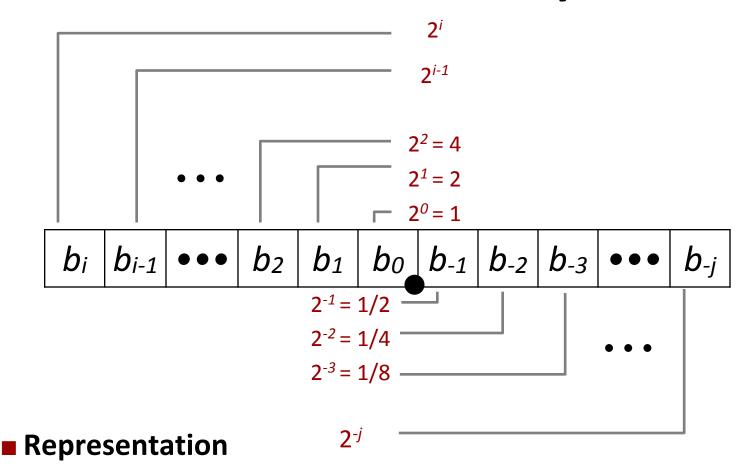
Today: Floating Point

- **■** Background: Fractional binary numbers
- Example and properties
- **IEEE floating point standard: Definition**
- Floating point in C
- Summary

Fractional binary numbers

- What is 1011.101₂?
- How can we express fractions like ¼ in binary?

Place-Value Fractional Binary Numbers



- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value

Representation

$$5^{3}/_{4}$$
 $2^{7}/_{8}$
 $^{25}/_{64}$

$$= 4 + 1 + \frac{1}{2} + \frac{1}{4} = 5^{3}/_{4}$$

$$= 2 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 2^{7}/_{8}$$

$$= \frac{1}{4} + \frac{1}{8} + \frac{1}{64} = \frac{25}{64}$$

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left

Limitations

- Can only exactly represent numbers of the form $x/2^k$
- Other rational numbers have repeating bit representations

<u>Value</u>	<u>Representation</u>
1/3	0.0101010101 [01] ₂
1/5	0.001100110011 [0011] ₂

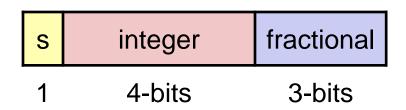
Limited range when used with "fixed point" representations

Convert:

 $255 \%_{16}$ to binary 10101.10101_2 to decimal

Suppose an 8-bit fixed-point representation with:

- One sign bit
- Four integer bits
- Three fractional bits



Convert:

 $12^{1}/_{8}$ to binary $-6^{3}/_{8}$ to binary 11010110_{2} to decimal

What bit pattern(s) have the largest positive value? What is it? What bit pattern(s) have the value closest to zero? What bit pattern(s) have the value of zero?

Today: Floating Point

- Background: Fractional binary numbers
- **■** Example and properties
- IEEE floating point standard: Definition
- **■** Floating point in C
- Summary

Floating Point Representation

Similar to scientific notation

E.g.:
$$1.25 \times 10^3 = 1,250$$

E.g.:
$$2.78 \times 10^{-2} = 0.0278$$

- FP is this concept but with an efficient binary format! But...
 - Uses base 2 instead of base 10
 - Places restrictions on how certain values are represented
 - Deals with finiteness of representation

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- **Significand** (mantissa) *M* normally a fractional value in range [1.0, 2.0)
- **Exponent** *E* weights value by power of two

Encoding

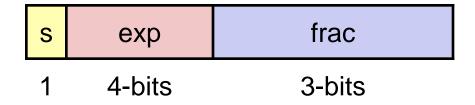
- S is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent (exp)
 - exp (not E) encoded as a 4-bit unsigned integer
 - Uses a bias to represent negative exponents
- the last three bits are the fraction (frac)
 - encodes fractional part of a fractional binary number

Tiny Floating Point Example



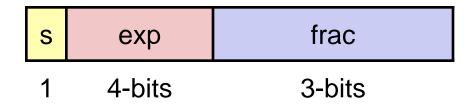
Fractional (Mantissa) Value

- Three bits- encoded left-to-right as b₀b₁b₂
- Place value of b_0 is 1/2, of b_1 is 1/4, and b_2 is 1/8
- Value usually includes an implied 1:

$$M = 1 + \frac{1}{2}b_0 + \frac{1}{4}b_1 + \frac{1}{8}b_2$$

■ If exp == 0000 then the implied 1 is not used

Tiny Floating Point Example



Exponent bias

- enable exponent to represent both positive and negative powers of 2
- use half of range for positive and half for negative power
- given k exponent bits, bias is then $2^{k-1}-1$

Exponent Value

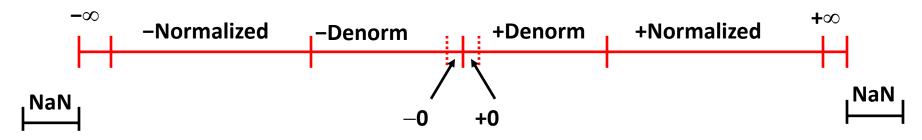
- is usually computed *E = exp bias*
- if exp == 0000 then *E* = 1 bias

Floating Point Encodings and Visualization

■ Five encodings:

- Two general forms: normalized, denormalized
- Three special values: zero, infinity, NaN (not a number)

<u>Name</u>	Exponent (exp)	Fraction (frac)
zero	exp == 0000	frac == 000
denormalized	exp == 0000	frac != 000
normalized	0000 < exp < 1111	frac != 000
infinity	exp == 1111	frac == 000
NaN	exp == 1111	frac != 000



 $V = (-1)^s M 2^E$

Dynamic Range (Positives)

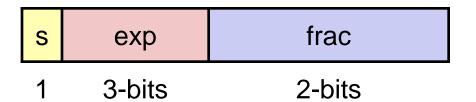
			0				·	norm: E = Exp — Bias
	s	exp	frac	E	Value			
	_							denorm: $E = 1 - Bias$
	0	0000	000	-6	0			
	0	0000	001	-6	1/8*1/64	= 1	1/51	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	= ;	2/51	
numbers								
	0	0000	110	-6	6/8*1/64	=	6/51	12
	0	0000	111	-6	7/8*1/64	=	7/51	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/51	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/51	L2
	•••							
	0	0110	110	-1	14/8*1/2	= 1	14/1	L6
	0	0110	111	-1	15/8*1/2	= ;	15/1	closest to 1 below
Normalized	0	0111	000	0	8/8*1	= 1	1	
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	= 1	10/8	3
	•••							
	0	1110	110	7	14/8*128	= ;	224	
	0	1110	111	7	15/8*128	= :	240	largest norm
	0	1111	000	n/a	inf			infinity
	0	1111	ххх	n/a	NaN			NaN (not a number)

Distribution of Values

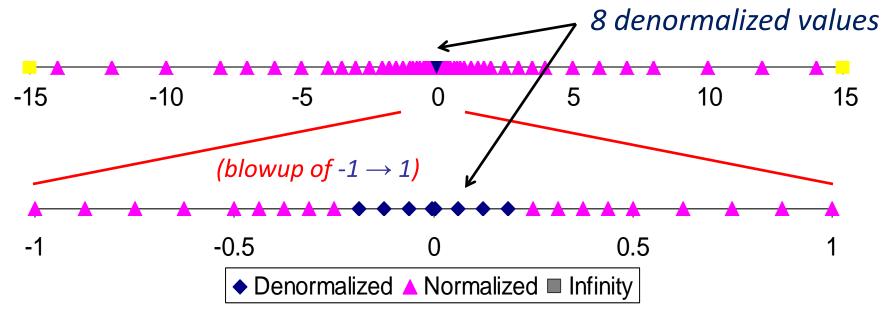
(reduced format from 8 bits to 6 bits for visualization)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$



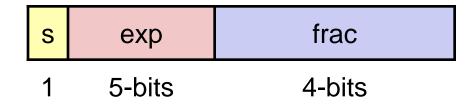
Notice how the distribution gets denser toward zero.



- 10-bit IEEE-like format
 - e = 5 exponent bits
 - f = 4 fraction bits

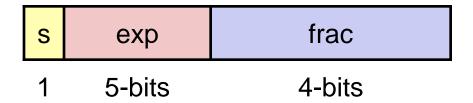
■ What is the exponent bias?

- 10-bit IEEE-like format
 - e = 5 exponent bits
 - f = 4 fraction bits



■ What is the exponent bias? $2^{5-1} - 1 = 15$

- 10-bit IEEE-like format
 - e = 5 exponent bits
 - f = 4 fraction bits



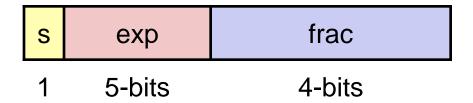
- What is the exponent bias? $2^{5-1} 1 = 15$
- How many denormalized numbers are there?

■ 10-bit IEEE-like format

- e = 5 exponent bits
- f = 4 fraction bits

- What is the exponent bias? $2^{5-1} 1 = 15$
- How many denormalized numbers are there?
 - Exponent = 00000, so 2^4 positive and 2^4 negative

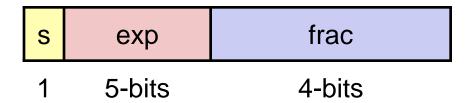
- 10-bit IEEE-like format
 - e = 5 exponent bits
 - f = 4 fraction bits



- What is the exponent bias? $2^{5-1} 1 = 15$
- How many denormalized numbers are there?
 - Exponent = 00000, so 2^4 positive and 2^4 negative
- **■** What is the bit pattern of the maximum value number?
- What is the bit pattern of the number closest to zero?

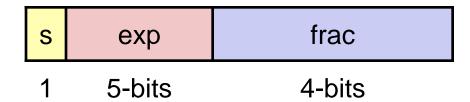
10-bit IEEE-like format

- e = 5 exponent bits
- f = 4 fraction bits



- What is the exponent bias? $2^{5-1} 1 = 15$
- How many denormalized numbers are there?
 - Exponent = 00000, so 2^4 positive and 2^4 negative
- What is the bit pattern of the maximum value number?
 - Sign = 0, Exponent = 11110, frac=1111, so 0111101111
- What is the bit pattern of the number closest to zero?
 - Sign = ?, Exponent = 00000, frac=0001, so ?00000001

- 10-bit IEEE-like format
 - e = 5 exponent bits
 - f = 4 fraction bits



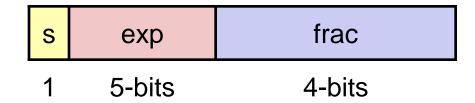
What is the bit pattern of the smallest positive normal number?

10-bit IEEE-like format

- e = 5 exponent bits
- f = 4 fraction bits

- What is the bit pattern of the smallest positive normal number?
 - Sign = 0, exp = 00001, frac = 0000; so 0000010000

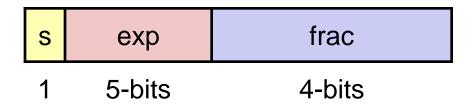
- 10-bit IEEE-like format
 - e = 5 exponent bits
 - f = 4 fraction bits



- What is the bit pattern of the smallest positive normal number?
 - Sign = 0, exp = 00001, frac = 0000; so 0000010000
- **■** What is the value of the smallest positive normal number?

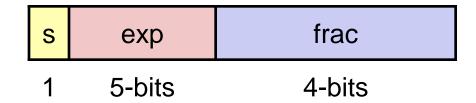
■ 10-bit IEEE-like format

- e = 5 exponent bits
- f = 4 fraction bits



- What is the bit pattern of the smallest positive normal number?
 - Sign = 0, exp = 00001, frac = 0000; so 0000010000
- **■** What is the value of the smallest positive normal number?
 - Value = $(-1)^s \times M \times 2^E$
 - S = 0
 - Exponent bias = 15, so E = 1 15 = -14
 - M = 1 + 0 × $\frac{1}{2}$ + 0 × $\frac{1}{4}$ + 0 × $\frac{1}{8}$ + 0 × $\frac{1}{16}$ = 1
 - Value = $(-1)^0 \times 1 \times 2^{-14} = \frac{1}{2^{14}} = 0.00006103515$

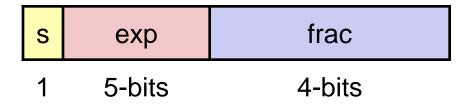
- 10-bit IEEE-like format
 - e = 5 exponent bits
 - f = 4 fraction bits



■ Given a 32-bit floating point number, and a 32-bit integer, which can represent more discrete values?

■ 10-bit IEEE-like format

- e = 5 exponent bits
- f = 4 fraction bits



- Given a 32-bit floating point number, and a 32-bit integer, which can represent more discrete values?
 - Both can represent 2^{32} values, but some bit patterns duplicate values, e.g. +0/-0, $+\infty/-\infty$, and many NaNs (exponent = 11...1, frac != 00...0)

Today: Floating Point

- Background: Fractional binary numbers
- **■** Example and properties
- **■** IEEE floating point standard: Definition
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
- **Exponent** *E* weights value by power of two

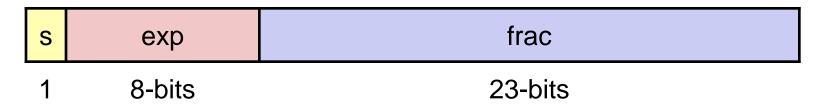
Encoding

- S is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

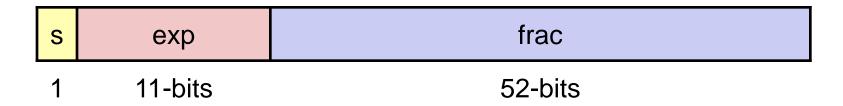
S

Precisions

■ Single precision: 32 bits (c type: float)



Double precision: 64 bits (c type: double)



Extended precision: 80 bits (Intel only)

S	exp	frac
1	15-bits	63 or 64-bits

Normalized Values

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- **Exponent coded as biased value:** E = Exp Bias
 - Exp: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (*exp*: 1...254 \Rightarrow *E*: -126...127)
 - Double precision: 1023 (*exp*: 1...2046 \Rightarrow *E*: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac
- Decimal value of normalized FP representations:
 - Single-precision: $Value_{10} = (-1)^s \times 1. frac \times 2^{exp-127}$
 - Double-precision: $Value_{10} = (-1)^s \times 1. frac \times 2^{exp-1023}$

Normalized Encoding Example

■ Value: float F = 15213.0; shift binary point by K bits so that ■ 15213₁₀ = 11101101101101₂ only one leading 1 bit remains on the left side of the binary point $= 1.1101101101101_2 \times 2^{13}$ (here, shifted right by 13 bits, so K = 13), then multiply by 2^{K} (here, 2^{13}) Significand 1.1101101101101, M 1101101101101000000000₂ frac= ■ Exponent (E = Exp - Bias) F 13 Bias = $Exp = E + Bias = 140 = 10001100_{2}$ 10001100 11011011011010000000000 frac S

Denormalized Values

- **Condition:** exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - *xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- Special condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	exp	frac	Numeric Value		
Zero	0000	0000	0.0		
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$		
■ Single $\approx 1.4 \times 10^{-45}$					
■ Double $\approx 4.9 \times 10^{-324}$					
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$		
■ Single $\approx 1.18 \times 10^{-38}$					
■ Double $\approx 2.2 \times 10^{-308}$					
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$		
Just larger than largest denormalized					
One	0111	0000	1.0		
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$		
Single ≈ 3.4 x 10 ³⁸					

Today: Floating Point

- Background: Fractional binary numbers
- **■** Example and properties
- IEEE floating point standard: Definition
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Today: Floating Point

- Background: Fractional binary numbers
- Example and properties
- IEEE floating point standard
- Floating point in C
- Rounding, addition, multiplication
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
■ Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Scientific Notation Multiplication

- \blacksquare $(2.5 \times 10^3) \times (3.0 \times 10^2) = ?$
- Compute result by pieces:
 - Sign: $sign_{left} * sign_{right} = 1*1 = 1$
 - Significand : $M_{left} * M_{right} = 2.5 * 3.0 = 7.5$
 - Exponent: $E_{left} + E_{right} = 3 + 2 = 5$

Result: 7.5×10^5

FP Multiplication

- \blacksquare $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- **Exact Result:** $(-1)^s M 2^E$
 - Sign s: s1 ^ s2
 - Significand *M*: *M1* x *M2*
 - Exponent E: E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If *E* out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Scientific Notation Addition

- \blacksquare $(2.5 \times 10^3) + (3.0 \times 10^2) = ?$
- Assume E_{left} is larger that E_{right}
- Align by decimal point:
 - Significand :

$$\frac{2.5}{+.3}$$

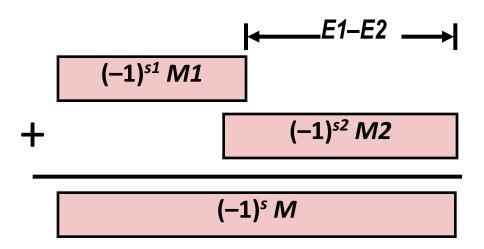
• Exponent : $E = E_{left} = 3$

Result: 2.8×10^3

Floating Point Addition

- $\blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - **A**ssume *E1* > *E2*
- Exact Result: $(-1)^s M 2^E$
 - ■Sign *s*, significand *M*:
 - Result of signed align & add
 - ■Exponent *E*: *E*1

Get binary points lined up



Fixing

- ■If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- ■Overflow if *E* out of range
- ■Round *M* to fit **frac** precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Commutative?

Yes

- (a + b) = (b + a)
- Associative?

No

- Overflow and inexactness of rounding
- \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

Mathematical Properties of FP Mult

Compare to Commutative Ring

• Multiplication Commutative?

Yes

- **Ex:** (1e20*1e-20) = (1e-20*1e20)
- Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- \blacksquare 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN

Summary

- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers