Saint Louis University

Arithmetic and Bitwise Operations
on Binary Data

CSCI 2400: Computer Architecture
ECE 3217: Computer Architecture and Organization

Instructor:
David Ferry

Slides adapted from Bryant & O’Hallaron’s slides
by Jason Fritts

Arithmetic and Bitwise Operations

m Operations
= Bitwise AND, OR, NOT, and XOR
= Logical AND, OR, NOT
= Shifts
= Complements

m Arithmetic
= Unsigned addition
= Signed addition
= Unsigned/signed multiplication
= Unsigned/signed division

Saint Louis University

Basic Processor Organization

m Register file (active data)

= We'll be a lot more specific later...

m Arithmetic Logic Unit (ALU) CPU
= Performs signed and unsigned
arithmetic Register
= Performs logic operations File
= Performs bitwise operations ALU
m Many other structures... i

Memory

Saint Louis University

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | |0 1
0({0 O O[O0 1
110 1 1(1 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = ANB = 1 when either A=1 or B=1, but not both
~ AMO 1
0|1 O[O0 1
110 111 O

Saint Louis University

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

= Bitwise-AND operator: &
= Bitwise-NOR operator: |
= Bitwise-XOR operator: A

= Bitwise-NOT operator:

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Saint Louis University

Quick Check

m Operate on Bit Vectors
= QOperations applied bitwise

= Bitwise-AND operator: &
= Bitwise-NOR operator: |

= Bitwise-XOR operator: A

~y

= Bitwise-NOT operator:

01100110 11110000 01101001
& 00101111 | 01010101 ~ 00001111 ~ 00101111

00100110 11110101 01100110 11010000

m All of the Properties of Boolean Algebra Apply

Bit-Level Operations in C

m Operations &, |, ~, " Availablein C

= Apply to any “integral” data type
= |ong, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (char data type):

in hexadecimal in binary
m ~0x41 - OXBE // ~01000001> -+ 10111110
m ~0x00 - OxFF // ~00000000, -+ 11111111>

0x69 & 0Ox55 = 0x41 // 01101001> & 010101012 = 01000001:
Ox69 | Ox55 = Ox7D // 01101001, | 01010101 = 01111101

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&,],!
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type):

= 10x41 = 0x00
= 10x00 == 0x01
= [10x41 = 0x01

= 0x69 && 0x55 = 0x01
= 0x69 || 0x55 = 0x01
" p&&*p // avoids null pointer access

Saint Louis University

Bitwise Operations: Applications

m Bit fields

®= One byte can fit up to eight options in a single field

= Example: char flags = 0x1 | 9ox4 | 0x8
= 00001101,
= Test for a flag:
if (flags & 0x4){
//bit 3 1is set
} else {

//bit 3 was not set
}

Saint Louis University

Shift Operations
m Left Shift: x << y Argument x| 01100010
= Shift bit-vector X left y places << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> y
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

- Throw away extra bits on right Argument x| 10100010

= Logical shift << 3 00010000

= Fill with 0’s on left Log.>> 2 | 00101000
" Arithmetic shift

= Replicate most significant bit on right

Arith. >> 2| 11101000

m Undefined Behavior

" Shift amount < 0 or > word size

10

Quick Check

m Left Shift: x << y Argument x| 00110011
= Shift bit-vector X left y places << 3
— Throw away extra bits on left Log. >> 4
= Fill with 0’s on right
Arith. >> 3

m Right Shift: x >> y
= Shift bit-vector X right y positions
= Throw away extra bits on right
" |ogical shift << 3
= Fill with 0’s on left
= Arithmetic shift
= Replicate most significant bit on right

Argument x| 1111111

Log.>> 4

Arith. >> 3

m Undefined Behavior

" Shift amount < 0 or > word size

1

Bitwise-NOT: One’s Complement

m Bitwise-NOT operation: ~
= Bitwise-NOT of x is ~x
= Flip all bits of x to compute ~x

= flipeach1toO
= flipeachOto1l

m Complement
" Givenx == 10011101

= Flip bits (one’s complement):

12

Signed Integer Negation: Two’s Complement

m Negate a number by taking 2’s Complement
= Flip bits (one’s complement) and add 1

~x + 1 == -x

m Negation (Two’s Complement):
" Givenx == 10011101

= Flip bits (one’s complement):

= Add 1: + 1

13

Saint Louis University

Complement & Increment Examples

X =15213
Decimal | Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010
~x+1 -15213(€4 93| 11000100 10010011

x=0
Decimal Hex Binary
0 0| 00 00 00000000 00000000
~0 -1| FF FF| 11111111 11111111
~0+1 0| 00 00| 00000000 0OOOOOOOO

14

Saint Louis University

Arithmetic and Bitwise Operations

m Operations
= Bitwise AND, OR, NOT, and XOR
= Logical AND, OR, NOT
= Shifts
= Complements
m Arithmetic
= Unsigned addition
= Signed addition
= Unsigned/signed multiplication
= Unsigned/signed division

15

Saint Louis University

Unsigned Addition

Operands: w bits U se e
-+ \% o0 0

True Sum: w+1 bits U+ —

Discard Carry: w bits s e

m Addition Operation

= Carry output dropped at end of addition
= Valid ONLY if true sum is within w-bit range

m Example #1:

1 1
OILTIOIIOILION %810 i iy 8ot
* 0f1[0joj1]0[1f0 7440 unsigned range
O |1/0J1{0f1}1]0]0 1724,

16

Saint Louis University

Unsigned Addition

m Example #2:

1 1 111
110
O[1110111111]0 9 Not Valid in 8-bit
* 111]0]0{1]0]1]0 2024 unsigned range
1] [oJo[1]1]1]ololo % (312 is > 255)
m Example #3:
1 11 111 1 1
o[oJ1[oJo[1]1]1]o]1[1]o]o]o]1]0 10082y, Not Valid in 16-bit
+ 1[1[1]ol1]o]1[o[o]1][o]o[1]o]1]O 59978,, unsigned range
70060 is > 65535
71 [o[ololz]ololo[Zl[o[Zlola]Z[ol0 /45{410 (.)

17

Saint Louis University

Visualizing True Sum (Mathematical) Addition

m Integer Addition
= 4-bit integers u, v

True Sum

" Compute true sum

= Values increase linearly
with uand v

" Forms planar surface

18

Visualizing Unsigned Addition
= Wraps Around Overflow

" |f true sum = 2% \

= At most once

True Sum

w+lT
2 Overflow

s

o <

Modular Sum

19

Saint Louis University

Two’s Complement Addition

Operands: w bits u 200
+ v o 00

True Sum: w+1 bits
u + V oo
Discard Carry: w bits vee

m Signed/Unsigned adds have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v

= Will give s ==

20

Saint Louis University

Note: Same bytes as for Ex #1 and Ex #2

SigHEd Add ition in unsigned integer addition, but

now interpreted as 8-bit signed integers

m Example #1:

1 1
0]/1/1{0]0|0f1]0 98,
+ ollololiloltlo 74, Not_“ Valid in 8-bit
signed range
0| [1]0{1]0]1{1]0]0 410 (172 > 127)
m Example #2:
1 1 111
110
e ® Valid in 8-bit
+ 111{0]0{1]0]1{0 -4 signed range
1] [olo[i[i[i[o[o[o] 56, (128 <56<127)

21

Saint Louis University

Note: Same bytes as for Ex #1 and Ex #2

SigHEd Add ition in unsigned integer addition, but

now interpreted as 8-bit signed integers

m Example #3:

1 1
1]111|0{0]0]1]0 -304
+ Ao[ojol0] -40: Valid in 8-bit
signed range
1] [1][o[1]1]1]0l1]0 =704 (-128 < -74)
m Example #2:
1 111
-100
1I00[111[11010 " Not Valid in 8-bit
+ 111{0]0{1]1]1{0 -3040 signed range
1] [o[2]1]o[1[o[1]o 106, (-150 < -128)

22

Saint Louis University

Visualizing Signed Addition

Negative Overflow

m Values
= 4-bit two’s comp.

= Range from -8 to +7

m Wraps Around
= |f sum > 2w
= Becomes negative
= At most once
" |f sum < —2w-1
= Becomes positive
= At most once

23

Saint Louis University

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w—2w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x * y > (-2w1)*(2w1-1) = —22w=24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (SMin,,)?
= Resultrange: x * y < (-2w1)2 = 22w=2
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

24

Saint Louis University

Unsigned Multiplication in C

u o 00
Operands: w bits
% o0 0
\ %
True Product: 2*w bits ¥ - Vv o0 0 oo

Discard w bits: w bits

m Standard Multiplication Function

= |gnores high order w bits

m Implements Modular Arithmetic

machine(u -v) = true(u-v) mod 2%

25

Signed Multiplication in C

u o 00
Operands: w bits
* o0 0
1%
True Product: 2*w bits U = V XK *eoe

Discard w bits: w bits

m Standard Multiplication Function

= |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

26

Saint Louis University

True Binary Multiplication

m Multiply positive integers using the same place-value
algorithm you learned in grade school

123,
X 234,

492
3690
+ 24600

28782,

27

Saint Louis University

True Binary Multiplication

m Multiply positive integers using the same place-value
algorithm you learned in grade school

123, o[1[1]1]1]o[1]1 123,

X 234, X (1/1/1]0]1]0]1]0 2344,
492
3690
+ 24600

28782,

28

Saint Louis University

True Binary Multiplication

m Multiply positive integers using the same place-value
algorithm you learned in grade school

123, o[1[1]1]1]o[1]1 123,
X 234, X (1/1/1]0]1]0]1]0 2344,
492 000000O0O
3690
+ 24600

28782,

29

Saint Louis University

True Binary Multiplication

m Multiply positive integers using the same place-value
algorithm you learned in grade school

123,, O0[111]1]1{0]1}1 1234,
X 234, X (1{1{1]0{1]0]1]0 234,
492 00000000
3690 01111011
+ 24600

28782,

30

Saint Louis University

True Binary Multiplication

m Multiply positive integers using the same place-value
algorithm you learned in grade school

123, O0[1]111]1]0j1]1 12344
X 234, X (1/1/1]0]1]0]1]0 2344,
492 00000000
3690 01111011
+ 24600 00000000

28782,

31

Saint Louis University

True Binary Multiplication

m Multiply positive integers using the same place-value
algorithm you learned in grade school

123, o[[a[a[1o[i1 123,,
X 234, X 1111]1110]1]01]110 234,
492 000000O00O0
3690 01111011
000000O00O0
+ 24600 01111011

28782,

32

True Binary Multiplication

m Multiply positive integers using the same place-value
algorithm you learned in grade school

123, O0[111]1]1{0]1}1 1234,
X 234, X 1111111011(01110 2344,
492 00000000
2600 01111011
00000000
+24600 01111011
00000000
28782, 01111011
01111011
+ 01111011
ol1[2[z[ololololola[zlola[a[a]o] 287824

33

Saint Louis University

Power-of-2 Multiply with Shift

m Consider: 6,*2, =12,

34

Saint Louis University

Power-of-2 Multiply with Shift

m Consider: 6,*2, =12,

0[1]1]0 610
X 10]0{1]0 210
0000
0110
0000
+ 0000
1{1]0]0 124,

35

Saint Louis University

Power-of-2 Multiply with Shift

m Consider: 6,*2, =12,

0]1]1]0 610
X 10|0|L]0 210
0/0/00
01/1/0
000
+ 000
1{1]0]0 124,

m Multiplying by two always shifts the input bit pattern by
one to the left. That is: (6,,* 2,,) == (0110, << 1)

m More generally- multiplying by 2k always shifts the input
by k to the left: (x,, * 2¥) == (x, << k)

36

Saint Louis University

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

Operands: w bits

*2k O] eee |0]1|0] eee |0]|O
True Product: w+k bits u = 2% e 0] eee |0]0
Discard k bits: w bits XX 0] eee |0O]O
m Examples
" g<< 3 ==u * 8
" (<< 5) - (UK 3) == u * 24

" Most machines shift and add faster than multiply
= Compiler generates this code automatically

37

Saint Louis University

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= g > kgives Lu / 2]
= Uses logical shift

k
u °oe 0eoe Binary Point
Operands:
l 2k Ol eee |O|110| eee |0OIO0
Division: 1/ 2k [0] eee 0]O l/ cee
Result: | u/2k | Lol e~ [o]O
Division Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x > 1 7606.5 7606 1D B6(00011101 10110110

x >> 4 950.8125 950 03 B6(00000011 10110110

x >> 8 | 59.4257813 59 00 3B| 00000000 0O111011

38

Saint Louis University

Incorrect Power-of-2 Divide

m Consider: -25 / 2

m We expectthat -25 / 2 = -12, however:

L -25,, = 11100111,

2. (-25 / 2) becomes (11100111, >> 1)
3. (11100111, >> 1) = 11110011,

1. 11110011, = -13

39

Saint Louis University

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x > kgives Lx / 2¢]
= Uses arithmetic shift
" Rounds wrong direction whenu < 0

k
X see see Binary Point
Operands:
l 2k O] eee |O|1]l0] eee |0O]|0 /
Division: x / 2k o0 oo I/ eee
Result: RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

40

Saint Louis University

Correct Power-of-2 Divide with Biasing

m Quotient of Negative Number by Power of 2
= Want| x / 2¢] (Round Toward 0)
= Computeas | (x+2k-1)/ 2k]
= InC: (x + (1<<k)-1) >> k

* Biases dividend toward 0 Dividend’s low bits are zero

Case 1: No rounding k /

Dividend: U cee | 10] e JOJO
_|_2k_1 eee |0|0]|1l eee |11l1

=

o

coe 1[eee [1[1] Binary Point

Divisor: | 2k 10| e 10J1]0] e+]OIO /

|_u/2k—| 1] eee |11111 X 41 eee |111

Biasing has no effect

4

Saint Louis University

Biasing without changing result

m Consider: -20 / 4 (answer should be -5)

Without bias:

1. -20,, = 11101100,

2. (-20 / 4) becomes (11101100, >> 2)
3. (11101100, >> 2) = 11111011,

a. 11111011, = -5

With bias:

1. -20,, + 3;, = 11101111,

2. (-23 / 4) becomes (11101111, >> 2)
3. (11101111, >> 2) = 11111011,

‘. 11111011, = -5

42

Saint Louis University

Correct Power-of-2 Divide (Cont.)

Nonzero low bits

k /

Dividend: x LAl] eee
_¥2k__1 Ol eee |OI0|1]| eee |11l1

Case 2: Rounding

1 eoo oo

\\ J
Y

Incremented by 1

Binary Point

Divisor: [2k 10] ee [0]1]0] == 0[O /
[x/2¢ | e mnm T T

\\ J
Y

Biasing adds 1 to final result Incremented by 1

43

Saint Louis University

Biasing that does change the result

m Consider: -21 / 4 (answer should be -5)

Without bias:

1. -21,, = 11101011,

2. (-21 / 4) becomes (11101011, >> 2)
3. (11101011, >> 2) = 11111010,

a. 11111010, = -6 (incorrect!)

With bias:

1. -21,, + 3;, = 11101110,

2. (-18 / 4) becomes (11101110, >> 2)
3. (11101110, >> 2) = 11111011,

‘. 11111011, = -5

44

Saint Louis University

Biasing that does change the result

m Consider: -21 / 4 (answer should be -5)

Without bias:

1. -21,, = 11101011,

2. (-21 / 4) becomes (11101011, >> 2)

3. (11101011, >> 2) = 11111010,

a. 11111010, = -6 (incorrect!) Recall- lowest
order bit has

With bias: value 1!

1. -21,, + 3;, = 11101110,

2. (-18 / 4) becomes (11101110, >> 2)

3. (11101110, >> 2) = 11111011,

a. 11111012*.2 = -5

45

Saint Louis University

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2k
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

46

