Arithmetic and Bitwise Operations on Binary Data

CSCI 2400: Computer Architecture

ECE 3217: Computer Architecture and Organization

Instructor:

David Ferry

Slides adapted from Bryant & O'Hallaron's slides by Jason Fritts

Arithmetic and Bitwise Operations

Operations

- Bitwise AND, OR, NOT, and XOR
- Logical AND, OR, NOT
- Shifts
- Complements

Arithmetic

- Unsigned addition
- Signed addition
- Unsigned/signed multiplication
- Unsigned/signed division

Basic Processor Organization

- Register file (active data)
 - We'll be a lot more specific later...
- Arithmetic Logic Unit (ALU)
 - Performs signed and unsigned arithmetic
 - Performs logic operations
 - Performs bitwise operations
- Many other structures...

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

■ A | B = 1 when either A=1 or B=1

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

~		
0	4	

1 | 0

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

```
Bitwise-AND operator:
```

Bitwise-NOR operator:

Bitwise-XOR operator:

Bitwise-NOT operator: ~

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Quick Check

Operate on Bit Vectors

Operations applied bitwise

```
Bitwise-AND operator: &
```

- Bitwise-XOR operator:
- Bitwise-NOT operator: ~

```
01100110 11110000 01101001

& 00101111 | 01010101 ^ 00001111 ~ 00101111

00100110 11110101 01100110 11010000
```

All of the Properties of Boolean Algebra Apply

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

Examples (char data type):

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&**&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type):
 - !0x41 → 0x00
 - $!0x00 \rightarrow 0x01$
 - \blacksquare !!0x41 → 0x01
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 | | 0x55 \rightarrow 0x01$
 - p && *p // avoids null pointer access

Bitwise Operations: Applications

Bit fields

One byte can fit up to eight options in a single field

```
Example: char flags = 0x1 | 0x4 | 0x8
= 000011012
```

```
Test for a flag:
   if ( flags & 0x4 ){
      //bit 3 is set
   } else {
      //bit 3 was not set
   }
```

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y places
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right

Argument x	01100010		
<< 3	00010 <i>000</i>		
Log. >> 2	00011000		
Arith. >> 2	00011000		

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Quick Check

- Left Shift: x << y</p>
 - Shift bit-vector x left y places
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right

Argument x	00110011
<< 3	
Log. >> 4	
Arith. >> 3	

Argument x	1111111
<< 3	
Log. >> 4	
Arith. >> 3	

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Bitwise-NOT: One's Complement

- Bitwise-NOT operation: ~
 - Bitwise-NOT of x is ~x
 - Flip all bits of x to compute ~x
 - flip each 1 to 0
 - flip each 0 to 1
- Complement
 - Given x == 10011101

Flip bits (one's complement):

Signed Integer Negation: Two's Complement

- Negate a number by taking 2's Complement
 - Flip bits (one's complement) and add 1

$$~x + 1 == -x$$

- Negation (Two's Complement):
 - Given x == 10011101

x: 10011101 -x: 0111000110

Flip bits (one's complement):

Add 1:

-x: 01100011

Complement & Increment Examples

$$x = 15213$$

	Decimal	He	X	Binary
x	15213	3B	6D	00111011 01101101
~x	-15214	C4	92	11000100 10010010
~x+1	-15213	C4	93	11000100 10010011

$$x = 0$$

	Decimal	Hex	Binary			
0	0	00 00	00000000 00000000			
~0	-1	FF FF	11111111 11111111			
~0+1	0	00 00	0000000 00000000			

Arithmetic and Bitwise Operations

Operations

- Bitwise AND, OR, NOT, and XOR
- Logical AND, OR, NOT
- Shifts
- Complements

Arithmetic

- Unsigned addition
- Signed addition
- Unsigned/signed multiplication
- Unsigned/signed division

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Addition Operation

- Carry output dropped at end of addition
- Valid ONLY if true sum is within w-bit range

Example #1:

Unsigned Addition

Example #2:

Not Valid in 8-bit unsigned range (312 is > 255)

■ Example #3:

1 0001000110101100

10082₁₀
59978₁₀

Not Valid in 16-bit unsigned range (70060 is > 65535)

Visualizing True Sum (Mathematical) Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum
- Values increase linearly with u and v
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Signed/Unsigned adds have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

Signed Addition

Note: Same bytes as for Ex #1 and Ex #2 in unsigned integer addition, but now interpreted as 8-bit signed integers

Example #1:

Not Valid in 8-bit signed range (172 > 127)

■ Example #2:

Valid in 8-bit signed range (-128 < 56 < 127)

Signed Addition

Note: Same bytes as for Ex #1 and Ex #2 in unsigned integer addition, but now interpreted as 8-bit signed integers

Example #3:

Example #2:

Visualizing Signed Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(SMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

 $machine(u \cdot v) = true(u \cdot v) \mod 2^w$

Signed Multiplication in C

Operands: w bits	*	u v		• • •]]
True Product: $2*w$ bits $u \cdot v$	• • •			• • •]
Discard w bits: w bits				• • •]

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

	123 ₁₀	
X	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
	878210	

	0 2	1 1	1	1	0	1	1	123 ₁₀
Χ	1	1 1	0	1	0	1	0	234 ₁₀

	123 ₁₀	
Χ	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
x 11101010	234 ₁₀
0000000	

	123 ₁₀	
X	234 ₁₀	
	492	
•	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
X 11101010	234 ₁₀
0000000000011111111	

	123 ₁₀	
X	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
28782 ₁₀		

01111011	123 ₁₀
x 11101010	234 ₁₀
0000000 01111011 0000000	

	123 ₁₀	
X	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
X 11101010	234 ₁₀
0000000000001111101100000000000000000	

	123 ₁₀	
Χ	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
x 11101010	234 ₁₀
$\begin{array}{c} 0000000\\ 01111011\\ 0000000\\ 01111011\\ 0000000\\ 01111011\\ 0111011\\ +0111011\\ \end{array}$	
0111000001101110	28782 ₁₀

Power-of-2 Multiply with Shift

Consider: $6_{10} * 2_{10} = 12_{10}$

0110	6 ₁₀
X 0010	2 ₁₀

Power-of-2 Multiply with Shift

Consider: $6_{10} * 2_{10} = 12_{10}$

0110	6 ₁₀
x 0010	2 ₁₀
0000 0110 0000 + 0000	
1100	12 ₁₀

Power-of-2 Multiply with Shift

Consider: $6_{10} * 2_{10} = 12_{10}$

- Multiplying by two always shifts the input bit pattern by one to the left. That is: (6₁₀ * 2₁₀) == (0110₂ << 1)</p>
- More generally- multiplying by 2^k always shifts the input by k to the left: $(x_{10} * 2^k) == (x_2 << k)$

k

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

Examples

- u << 3 == u * 8</pre>
- (u << 5) (u << 3) == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Incorrect Power-of-2 Divide

- **■** Consider: -25 / 2
- We expect that -25 / 2 = -12, however:

```
1. -25_{10} = 11100111_{2}

2. (-25 / 2) becomes (11100111_{2} >> 1)

3. (11100111_{2} >> 1) = 11110011_{2}

4. 11110011_{2} = -13
```

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Dividend's low bits are zero

Correct Power-of-2 Divide with *Biasing*

- **Quotient of Negative Number by Power of 2**
 - Want $\lceil \mathbf{x} / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - $\ln C: (x + (1 << k) -1) >> k$

u

 $+2^{k}-1$

 $|u|/2^k$

Biases dividend toward 0

Case 1: No rounding

Dividend:

Divisor:

kBinary Point 2^k

Biasing has no effect

Biasing without changing result

■ Consider: -20 / 4 (answer should be -5)

Without bias:

```
-20_{10} = 11101100_2
```

- (-20 / 4) becomes $(11101100_2 >> 2)$
- $(11101100_2 >> 2) = 11111011_2$
- 4. $11111011_2 = -5$

With bias:

- $-20_{10} + 3_{10} = 11101111_{2}$
- (-23 / 4) becomes $(11101111_2 >> 2)$
- $(11101111_2 >> 2) = 111111011_2$
- 4. $11111011_2 = -5$

Correct Power-of-2 Divide (Cont.)

Biasing that does change the result

■ Consider: -21 / 4 (answer should be -5)

Without bias:

```
1. -21_{10} = 11101011_{2}

2. (-21 / 4) becomes (11101011_{2} >> 2)

3. (11101011_{2} >> 2) = 11111010_{2}
```

4. $11111010_2 = -6$ (incorrect!)

With bias:

```
1. -21_{10} + 3_{10} = 11101110_{2}

2. (-18 / 4) becomes (11101110_{2} >> 2)

3. (11101110_{2} >> 2) = 11111011_{2}

4. 1111011_{2} = -5
```

Biasing that does change the result

■ Consider: -21 / 4 (answer should be -5)

Without bias:

```
-21_{10} = 11101011_2
```

- (-21 / 4) becomes $(11101011_2 >> 2)$
- $(11101011_2 >> 2) = 111111010_2$
- 4. $11111010_2 = -6$ (incorrect!)

Recall- lowest order bit has value 1!

With bias:

$$-21_{10} + 3_{10} = 11101110_2$$

- (-18 / 4) becomes $(11101110_2 >> 2)$
- 3. $(11101110_2 >> 2) = 111111011_2$
- $1111101_{\frac{1}{2}}^{1} = -5$

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix