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Fractional binary numbers 

 What is 1011.1012? 

 How can we express fractions like ¼ in binary? 
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2i 

2i-1 

22 = 4 

21 = 2 

20 = 1 

2-1 = 1/2 

2-2 = 1/4 

2-3 = 1/8 

2-j 

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j 

• • • 

Place-Value Fractional Binary Numbers 

 Representation 

 Bits to right of “binary point” represent fractional powers of 2 

 Represents rational number: 

• • • 
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Fractional Binary Numbers: Examples 

 Value Representation 
  5 3

4   101.112 = 4 + 1 + 1
2 + 1

4 = 5 3
4  

   2 7
8   010.1112 = 2 + 1

2 + 1
4 + 1

8 = 2 7
8  

   25 64  000.0110012 = 1
4 + 1

8 + 1
64 = 25

64  

 

 Observations 
 Divide by 2 by shifting right 
 Multiply by 2 by shifting left 

 Limitations 
 Can only exactly represent numbers of the form x/2k 

 Other rational numbers have repeating bit representations 
 Value Representation 

 1/3 0.0101010101[01]…2 

 1/5 0.001100110011[0011]…2 

 

 Limited range when used with “fixed point” representations 
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Quick Check 

 Convert: 

 255 9⁄16  to binary 

 10101.101012 to decimal 
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Quick Check 

Suppose an 8-bit fixed-point representation with: 
 One sign bit 
 Four integer bits 
 Three fractional bits 
 
 
Convert: 

  12 1
8   to binary 

   −6 3
8   to binary 

   110101102  to decimal 

  
 

What bit pattern(s) have the largest positive value? What is it? 
What bit pattern(s) have the value closest to zero? 
What bit pattern(s) have the value of zero? 

s integer fractional 

1 4-bits 3-bits 
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Floating Point Representation 

 Similar to scientific notation 

 

 E.g.: 1.25 × 103 = 1,250 

 E.g.: 2.78 × 10−2 = 0.0278 

 

 FP is this concept but with an efficient binary format! But… 

 Uses base 2 instead of base 10 

 Places restrictions on how certain values are represented 

 Deals with finiteness of representation 
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 Numerical Form:  
   (–1)s M  2E 

 Sign bit s determines whether number is negative or positive 

 Significand (mantissa) M  normally a fractional value in range [1.0, 2.0) 

 Exponent E weights value by power of two 

 

 Encoding 

 s is sign bit s 

 exp field encodes E    (but is not equal to E) 

 frac field encodes M    (but is not equal to M) 

Floating Point Representation 

s exp frac 
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Tiny Floating Point Example 

 8-bit Floating Point Representation 

 the sign bit is in the most significant bit 

 the next four bits are the exponent (exp), with a bias of 24-1 - 1 = 7 

 the last three bits are the fraction (frac) 

 

 Exponent bias 

 enable exponent to represent both positive and negative powers of 2 

 use half of range for positive and half for negative power 

 given k exponent bits, bias is then 2k-1 - 1 

s exp frac 

1 4-bits 3-bits 
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Floating Point Encodings and Visualization 

+ − 

0 

+Denorm +Normalized −Denorm −Normalized 

+0 
NaN NaN 

 Five encodings: 

 Two general forms:  normalized, denormalized 

 Three special values:  zero, infinity, NaN  (not a number) 
 

 Name Exponent(exp) Fraction(frac) 

 zero exp == 0000 frac == 000 

 denormalized exp == 0000 frac != 000 

 normalized 0000 < exp < 1111 frac != 000 

 infinity exp == 1111 frac == 000 

 NaN exp == 1111 frac != 000 
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s exp  frac E Value  

0 0000 000 -6 0 

0 0000 001 -6 1/8*1/64 = 1/512 

0 0000 010 -6 2/8*1/64 = 2/512 

… 

0 0000 110 -6 6/8*1/64 = 6/512 

0 0000 111 -6 7/8*1/64 = 7/512 

0 0001 000 -6 8/8*1/64 = 8/512 

0 0001 001   -6 9/8*1/64 = 9/512 

… 

0 0110 110 -1 14/8*1/2 = 14/16 

0 0110 111 -1 15/8*1/2 = 15/16 

0 0111 000 0 8/8*1    = 1 

0 0111 001 0 9/8*1    = 9/8 

0 0111 010 0 10/8*1   = 10/8 

… 

0 1110 110 7 14/8*128 = 224 

0 1110 111 7 15/8*128 = 240 

0 1111 000 n/a inf 

0 1111 xxx n/a NaN 

 

Dynamic Range (Positives) 

closest to zero 

largest denorm 

smallest norm 

closest to 1 below 

closest to 1 above 

largest norm 

Denormalized 
numbers 

Normalized 
numbers 

infinity 
NaN  (not a number) 

v = (–1)s M 2E 

norm: E = Exp – Bias 
denorm: E = 1 – Bias 
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Distribution of Values 

 6-bit IEEE-like format 

 e = 3 exponent bits 

 f = 2 fraction bits 

 Bias is 23-1-1 = 3 

 

 Notice how the distribution gets denser toward zero.  

s exp frac 

1 3-bits 2-bits 

-15 -10 -5 0 5 10 15

 8 denormalized values 

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

 (blowup of -1 → 1) 

 (reduced format from 8 bits 
to 6 bits for visualization) 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

 Exponent = 00000, so 24 positive and 24 negative 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

 Exponent = 00000, so 24 positive and 24 negative 

 What is the bit pattern of the maximum value number? 

 What is the bit pattern of the number closest to zero? 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

 Exponent = 00000, so 24 positive and 24 negative 

 What is the bit pattern of the maximum value number? 
 Sign = 0, Exponent = 11110, frac=1111, so 0111101111 

 What is the bit pattern of the number closest to zero? 

 Sign = ?, Exponent = 00000, frac=0001, so ?000000001 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 Sign = 0, exp = 00001, frac = 0000; so 0000010000 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 Sign = 0, exp = 00001, frac = 0000; so 0000010000 

 What is the value of the smallest positive normal number? 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 Sign = 0, exp = 00001, frac = 0000; so 0000010000 

 What is the value of the smallest positive normal number? 

 Value = (−1)𝑠×𝑀 × 2𝐸  

 S = 0 

 Exponent bias = 15, so E = 1 - 15 = -14 

 M = 1 + 0 ×
1

2
+ 0 ×

1

4
+ 0 ×

1

8
+ 0 ×

1

16
 = 1 

 Value = (−1)0× 1 × 2−14 = 1 214  = 0.00006103515 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 Given a 32-bit floating point number, and a 32-bit integer, 
which can represent more discrete values? 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 Given a 32-bit floating point number, and a 32-bit integer, 
which can represent more discrete values? 

 Both can represent 232 values, but some bit patterns duplicate values, 
e.g. +0/-0, +/-, and many NaNs (exponent = 11…1, frac != 00…0) 

s exp frac 

1 5-bits 4-bits 
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IEEE Floating Point 

 IEEE Standard 754 

 Established in 1985 as uniform standard for floating point arithmetic 

 Before that, many idiosyncratic formats 

 Supported by all major CPUs 

 

 Driven by numerical concerns 

 Nice standards for rounding, overflow, underflow 

 Hard to make fast in hardware 

 Numerical analysts predominated over hardware designers in defining 
standard 
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 Numerical Form:  
   (–1)s M  2E 

 Sign bit s determines whether number is negative or positive 

 Significand (mantissa) M  normally a fractional value in range [1.0, 2.0) 

 Exponent E weights value by power of two 

 

 Encoding 

 s is sign bit s 

 exp field encodes E    (but is not equal to E) 

 frac field encodes M    (but is not equal to M) 

Floating Point Representation 

s exp frac 



30 

Saint Louis University 

Precisions 

 Single precision: 32 bits (c type: float) 

 Double precision: 64 bits (c type: double) 

 Extended precision: 80 bits (Intel only) 

s exp frac 

1 8-bits 23-bits 

s exp frac 

1 11-bits 52-bits 

s exp frac 

1 15-bits 63 or 64-bits 
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Normalized Values 

 Condition: exp ≠ 000…0 and exp ≠ 111…1 
 

 Exponent coded as biased value:   E  =  Exp – Bias 

 Exp:  unsigned value of exp field  

 Bias = 2k-1 - 1, where k is number of exponent bits 

 Single precision:  127   (exp: 1…254    E: -126…127) 

 Double precision:  1023   (exp: 1…2046   E: -1022…1023) 
 

 Significand coded with implied leading 1:   M  =  1.xxx…x2 

  xxx…x: bits of frac 
 

 Decimal value of normalized FP representations: 

 Single-precision: 𝑉𝑎𝑙𝑢𝑒10 = −1 𝑠 × 1. 𝑓𝑟𝑎𝑐 × 2𝑒𝑥𝑝−127 

 Double-precision: 𝑉𝑎𝑙𝑢𝑒10 = −1 𝑠 × 1. 𝑓𝑟𝑎𝑐 × 2𝑒𝑥𝑝−1023 



Carnegie Mellon 
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Normalized Encoding Example 

 Value:   float F = 15213.0; 

 1521310  = 111011011011012    

 

                     = 1.11011011011012 x 213 

 

 Significand 
M  =  1.11011011011012 

frac =    110110110110100000000002 

 

 Exponent  (E  =  Exp – Bias) 
E   =   13 

Bias  =   127 

Exp  = E + Bias  =  140  = 100011002 
 

 

    0 10001100 11011011011010000000000  
 s exp frac 

shift binary point by K bits so that 
only one leading 1 bit remains on 

the left side of the binary point 
(here, shifted right by 13 bits, so K = 13), 

then multiply by 2K   (here, 213) 
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Denormalized Values 

 Condition:  exp = 000…0 

 

 Exponent value:    E = –Bias + 1  (instead of E = 0 – Bias) 

 Significand coded with implied leading 0:    M = 0.xxx…x2 
 xxx…x: bits of frac 

 Cases 
  exp = 000…0, frac = 000…0 

 Represents zero value 

 Note distinct values: +0 and –0 (why?) 

 exp = 000…0, frac ≠ 000…0 

 Numbers very close to 0.0 

 Lose precision as get smaller 

 Equispaced 



34 

Saint Louis University 

Special Values 

 Special condition:   exp = 111…1 

 

 Case:   exp = 111…1,   frac = 000…0 

 Represents value  (infinity) 

 Operation that overflows 

 Both positive and negative 

 E.g., 1.0/0.0 = −1.0/−0.0 = +,  1.0/−0.0 = − 

 

 Case:   exp = 111…1,   frac ≠ 000…0 

 Not-a-Number (NaN) 

 Represents case when no numeric value can be determined 

 E.g., sqrt(–1),  − ,   0 
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Interesting Numbers 
Description exp frac Numeric Value 

 Zero 00…00 00…00 0.0 

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022} 

 Single ≈ 1.4 x 10–45 

 Double ≈ 4.9 x 10–324 

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022} 

 Single ≈ 1.18 x 10–38 

 Double ≈ 2.2 x 10–308 

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022} 

 Just larger than largest denormalized 

 One 01…11 00…00 1.0 

  Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023} 

 Single ≈ 3.4 x 1038 

 Double ≈ 1.8 x 10308 

{single,double} 
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Floating Point in C 

 C Guarantees Two Levels 
float single precision 

double double precision 

 Conversions/Casting 
Casting between int, float, and double changes bit representation 

 double/float → int 

 Truncates fractional part 

 Like rounding toward zero 

 Not defined when out of range or NaN: Generally sets to TMin 

 int → double 

 Exact conversion, as long as int has ≤ 53 bit word size 

 int → float 

 Will round according to rounding mode 
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 Background: Fractional binary numbers 

 Example and properties 
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 Floating point in C 

 Summary 
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Floating Point Operations: Basic Idea 

 x +f y = Round(x + y) 

 

 x f y = Round(x  y) 

 

 Basic idea 

 First compute exact result 

 Make it fit into desired precision 

 Possibly overflow if exponent too large 

 Possibly round to fit into frac 
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Rounding 

 Rounding Modes (illustrate with $ rounding) 

 

  $1.40 $1.60 $1.50 $2.50 –$1.50 

 Towards zero $1 $1 $1 $2 –$1 

 Round down (−) $1 $1 $1 $2 –$2 

 Round up (+)  $2 $2 $2 $3 –$1 

 Nearest Even (default) $1 $2 $2 $2 –$2 
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Closer Look at Round-To-Even 
 Default Rounding Mode 

 Hard to get any other kind without dropping into assembly 

 All others are statistically biased 

 Sum of set of positive numbers will consistently be over- or under- 
estimated 

 

 Applying to Other Decimal Places / Bit Positions 

 When exactly halfway between two possible values 

 Round so that least significant digit is even 

 E.g., round to nearest hundredth 

 7.8949999 7.89 (Less than half way) 

 7.8950001 7.90 (Greater than half way) 

 7.8950000 7.90 (Half way—round up) 

 7.8850000 7.88 (Half way—round down) 
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Rounding Binary Numbers 

 Binary Fractional Numbers 
 “Even” when least significant bit is 0 

 “Half way” when bits to right of rounding position = 100…2 

 

 Examples 
 Round to nearest 1/4 (2 bits right of binary point) 

Value Binary Rounded Action Rounded Value 

2 3/32 10.000112 10.002 (<1/2—down) 2 

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4 

2 7/8 10.111002 11.002 (  1/2—up) 3 

2 5/8 10.101002 10.102 (  1/2—down) 2 1/2 



43 

Saint Louis University 

Scientific Notation Multiplication 

 2.5 × 103 × (3.0 × 102) = ? 

 Compute result by pieces: 

 Sign :   signleft * signright = 1*1 = 1 

 Significand :  Mleft * Mright = 2.5 * 3.0 = 7.5 

 Exponent :   Eleft + Eright = 3 + 2 = 5 

 

Result: 7.5 × 105 
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FP Multiplication 

 (–1)s1 M1  2E1   x   (–1)s2 M2  2E2 

 Exact Result: (–1)s M  2E 

 Sign s:   s1 ^ s2 

 Significand M:  M1 x M2 

 Exponent E:  E1 + E2 

 

 Fixing 

 If M ≥ 2, shift M right, increment E 

 If E out of range, overflow  

 Round M to fit frac precision 

 

 Implementation 

 Biggest chore is multiplying significands 
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Scientific Notation Addition 

 2.5 × 103 + (3.0 × 102) = ? 

 Assume Eleft is larger that Eright 

 Align by decimal point: 

 Significand :  
    2.5 

   + .3 

    2.8 

 

 Exponent :   E = Eleft = 3 

 

Result: 2.8 × 103 
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Floating Point Addition 

 (–1)s1 M1  2E1   +   (-1)s2 M2  2E2 

Assume E1 > E2 

 

 Exact Result: (–1)s M  2E 

Sign s, significand M:  

 Result of signed align & add 

Exponent E:  E1 

 

 Fixing 
If M ≥ 2, shift M right, increment E  

if M < 1, shift M left k positions, decrement E by k 

Overflow if E out of range 

Round M to fit frac precision 

(–1)s1 M1  

(–1)s2 M2  

E1–E2 

+ 

(–1)s M 

Get binary points lined up 
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Mathematical Properties of FP Add 

 Compare to those of Abelian Group 

 Commutative? 

 (a + b) = (b + a) 

 

 Associative? 

 Overflow and inexactness of rounding 

 (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14 

Yes 

No 
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Mathematical Properties of FP Mult 

 Compare to Commutative Ring 

 Multiplication Commutative? 

 Ex: (1e20*1e-20)=(1e-20*1e20) 

 

 Multiplication is Associative? 

 Possibility of overflow, inexactness of rounding 

 Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20 

 

 Multiplication distributes over addition? 

 Possibility of overflow, inexactness of rounding 

 1e20*(1e20-1e20)= 0.0,  1e20*1e20 – 1e20*1e20 = NaN 

Yes 

No 

No 
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Summary 

 Represents numbers of form M x 2E 

 

 One can reason about operations independent of 
implementation 

 As if computed with perfect precision and then rounded 

 

 Not the same as real arithmetic 

 Violates associativity/distributivity 

 Makes life difficult for compilers & serious numerical applications 
programmers 


