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Today: Floating Point 

 Background: Fractional binary numbers 

 Example and properties 

 IEEE floating point standard: Definition 

 Floating point in C 

 Summary 
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Fractional binary numbers 

 What is 1011.1012? 

 How can we express fractions like ¼ in binary? 



4 

Saint Louis University 

2i 

2i-1 

22 = 4 

21 = 2 

20 = 1 

2-1 = 1/2 

2-2 = 1/4 

2-3 = 1/8 

2-j 

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j 

• • • 

Place-Value Fractional Binary Numbers 

 Representation 

 Bits to right of “binary point” represent fractional powers of 2 

 Represents rational number: 

• • • 



5 

Saint Louis University 

Fractional Binary Numbers: Examples 

 Value Representation 
  5 3

4   101.112 = 4 + 1 + 1
2 + 1

4 = 5 3
4  

   2 7
8   010.1112 = 2 + 1

2 + 1
4 + 1

8 = 2 7
8  

   25 64  000.0110012 = 1
4 + 1

8 + 1
64 = 25

64  

 

 Observations 
 Divide by 2 by shifting right 
 Multiply by 2 by shifting left 

 Limitations 
 Can only exactly represent numbers of the form x/2k 

 Other rational numbers have repeating bit representations 
 Value Representation 

 1/3 0.0101010101[01]…2 

 1/5 0.001100110011[0011]…2 

 

 Limited range when used with “fixed point” representations 
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Quick Check 

 Convert: 

 255 9⁄16  to binary 

 10101.101012 to decimal 
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Quick Check 

Suppose an 8-bit fixed-point representation with: 
 One sign bit 
 Four integer bits 
 Three fractional bits 
 
 
Convert: 

  12 1
8   to binary 

   −6 3
8   to binary 

   110101102  to decimal 

  
 

What bit pattern(s) have the largest positive value? What is it? 
What bit pattern(s) have the value closest to zero? 
What bit pattern(s) have the value of zero? 

s integer fractional 

1 4-bits 3-bits 
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Today: Floating Point 

 Background: Fractional binary numbers 

 Example and properties 

 IEEE floating point standard: Definition 

 Floating point in C 

 Summary 
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Floating Point Representation 

 Similar to scientific notation 

 

 E.g.: 1.25 × 103 = 1,250 

 E.g.: 2.78 × 10−2 = 0.0278 

 

 FP is this concept but with an efficient binary format! But… 

 Uses base 2 instead of base 10 

 Places restrictions on how certain values are represented 

 Deals with finiteness of representation 
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 Numerical Form:  
   (–1)s M  2E 

 Sign bit s determines whether number is negative or positive 

 Significand (mantissa) M  normally a fractional value in range [1.0, 2.0) 

 Exponent E weights value by power of two 

 

 Encoding 

 s is sign bit s 

 exp field encodes E    (but is not equal to E) 

 frac field encodes M    (but is not equal to M) 

Floating Point Representation 

s exp frac 
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Tiny Floating Point Example 

 8-bit Floating Point Representation 

 the sign bit is in the most significant bit 

 the next four bits are the exponent (exp), with a bias of 24-1 - 1 = 7 

 the last three bits are the fraction (frac) 

 

 Exponent bias 

 enable exponent to represent both positive and negative powers of 2 

 use half of range for positive and half for negative power 

 given k exponent bits, bias is then 2k-1 - 1 

s exp frac 

1 4-bits 3-bits 



12 

Saint Louis University 

Floating Point Encodings and Visualization 

+ − 

0 

+Denorm +Normalized −Denorm −Normalized 

+0 
NaN NaN 

 Five encodings: 

 Two general forms:  normalized, denormalized 

 Three special values:  zero, infinity, NaN  (not a number) 
 

 Name Exponent(exp) Fraction(frac) 

 zero exp == 0000 frac == 000 

 denormalized exp == 0000 frac != 000 

 normalized 0000 < exp < 1111 frac != 000 

 infinity exp == 1111 frac == 000 

 NaN exp == 1111 frac != 000 
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s exp  frac E Value  

0 0000 000 -6 0 

0 0000 001 -6 1/8*1/64 = 1/512 

0 0000 010 -6 2/8*1/64 = 2/512 

… 

0 0000 110 -6 6/8*1/64 = 6/512 

0 0000 111 -6 7/8*1/64 = 7/512 

0 0001 000 -6 8/8*1/64 = 8/512 

0 0001 001   -6 9/8*1/64 = 9/512 

… 

0 0110 110 -1 14/8*1/2 = 14/16 

0 0110 111 -1 15/8*1/2 = 15/16 

0 0111 000 0 8/8*1    = 1 

0 0111 001 0 9/8*1    = 9/8 

0 0111 010 0 10/8*1   = 10/8 

… 

0 1110 110 7 14/8*128 = 224 

0 1110 111 7 15/8*128 = 240 

0 1111 000 n/a inf 

0 1111 xxx n/a NaN 

 

Dynamic Range (Positives) 

closest to zero 

largest denorm 

smallest norm 

closest to 1 below 

closest to 1 above 

largest norm 

Denormalized 
numbers 

Normalized 
numbers 

infinity 
NaN  (not a number) 

v = (–1)s M 2E 

norm: E = Exp – Bias 
denorm: E = 1 – Bias 
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Distribution of Values 

 6-bit IEEE-like format 

 e = 3 exponent bits 

 f = 2 fraction bits 

 Bias is 23-1-1 = 3 

 

 Notice how the distribution gets denser toward zero.  

s exp frac 

1 3-bits 2-bits 

-15 -10 -5 0 5 10 15

 8 denormalized values 

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

 (blowup of -1 → 1) 

 (reduced format from 8 bits 
to 6 bits for visualization) 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

 Exponent = 00000, so 24 positive and 24 negative 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

 Exponent = 00000, so 24 positive and 24 negative 

 What is the bit pattern of the maximum value number? 

 What is the bit pattern of the number closest to zero? 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 What is the exponent bias? 25−1 − 1 = 15 

 How many denormalized numbers are there?  

 Exponent = 00000, so 24 positive and 24 negative 

 What is the bit pattern of the maximum value number? 
 Sign = 0, Exponent = 11110, frac=1111, so 0111101111 

 What is the bit pattern of the number closest to zero? 

 Sign = ?, Exponent = 00000, frac=0001, so ?000000001 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 Sign = 0, exp = 00001, frac = 0000; so 0000010000 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 Sign = 0, exp = 00001, frac = 0000; so 0000010000 

 What is the value of the smallest positive normal number? 

s exp frac 

1 5-bits 4-bits 



24 

Saint Louis University 

Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 What is the bit pattern of the smallest positive normal 
number? 
 Sign = 0, exp = 00001, frac = 0000; so 0000010000 

 What is the value of the smallest positive normal number? 

 Value = (−1)𝑠×𝑀 × 2𝐸  

 S = 0 

 Exponent bias = 15, so E = 1 - 15 = -14 

 M = 1 + 0 ×
1

2
+ 0 ×

1

4
+ 0 ×

1

8
+ 0 ×

1

16
 = 1 

 Value = (−1)0× 1 × 2−14 = 1 214  = 0.00006103515 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 Given a 32-bit floating point number, and a 32-bit integer, 
which can represent more discrete values? 

s exp frac 

1 5-bits 4-bits 
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Quick Check 

 10-bit IEEE-like format 

 e = 5 exponent bits 

 f = 4 fraction bits 

 

 

 Given a 32-bit floating point number, and a 32-bit integer, 
which can represent more discrete values? 

 Both can represent 232 values, but some bit patterns duplicate values, 
e.g. +0/-0, +/-, and many NaNs (exponent = 11…1, frac != 00…0) 

s exp frac 

1 5-bits 4-bits 
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Today: Floating Point 

 Background: Fractional binary numbers 

 Example and properties 

 IEEE floating point standard: Definition 

 Floating point in C 

 Summary 
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IEEE Floating Point 

 IEEE Standard 754 

 Established in 1985 as uniform standard for floating point arithmetic 

 Before that, many idiosyncratic formats 

 Supported by all major CPUs 

 

 Driven by numerical concerns 

 Nice standards for rounding, overflow, underflow 

 Hard to make fast in hardware 

 Numerical analysts predominated over hardware designers in defining 
standard 
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 Numerical Form:  
   (–1)s M  2E 

 Sign bit s determines whether number is negative or positive 

 Significand (mantissa) M  normally a fractional value in range [1.0, 2.0) 

 Exponent E weights value by power of two 

 

 Encoding 

 s is sign bit s 

 exp field encodes E    (but is not equal to E) 

 frac field encodes M    (but is not equal to M) 

Floating Point Representation 

s exp frac 
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Precisions 

 Single precision: 32 bits (c type: float) 

 Double precision: 64 bits (c type: double) 

 Extended precision: 80 bits (Intel only) 

s exp frac 

1 8-bits 23-bits 

s exp frac 

1 11-bits 52-bits 

s exp frac 

1 15-bits 63 or 64-bits 
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Normalized Values 

 Condition: exp ≠ 000…0 and exp ≠ 111…1 
 

 Exponent coded as biased value:   E  =  Exp – Bias 

 Exp:  unsigned value of exp field  

 Bias = 2k-1 - 1, where k is number of exponent bits 

 Single precision:  127   (exp: 1…254    E: -126…127) 

 Double precision:  1023   (exp: 1…2046   E: -1022…1023) 
 

 Significand coded with implied leading 1:   M  =  1.xxx…x2 

  xxx…x: bits of frac 
 

 Decimal value of normalized FP representations: 

 Single-precision: 𝑉𝑎𝑙𝑢𝑒10 = −1 𝑠 × 1. 𝑓𝑟𝑎𝑐 × 2𝑒𝑥𝑝−127 

 Double-precision: 𝑉𝑎𝑙𝑢𝑒10 = −1 𝑠 × 1. 𝑓𝑟𝑎𝑐 × 2𝑒𝑥𝑝−1023 



Carnegie Mellon 
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Normalized Encoding Example 

 Value:   float F = 15213.0; 

 1521310  = 111011011011012    

 

                     = 1.11011011011012 x 213 

 

 Significand 
M  =  1.11011011011012 

frac =    110110110110100000000002 

 

 Exponent  (E  =  Exp – Bias) 
E   =   13 

Bias  =   127 

Exp  = E + Bias  =  140  = 100011002 
 

 

    0 10001100 11011011011010000000000  
 s exp frac 

shift binary point by K bits so that 
only one leading 1 bit remains on 

the left side of the binary point 
(here, shifted right by 13 bits, so K = 13), 

then multiply by 2K   (here, 213) 
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Denormalized Values 

 Condition:  exp = 000…0 

 

 Exponent value:    E = –Bias + 1  (instead of E = 0 – Bias) 

 Significand coded with implied leading 0:    M = 0.xxx…x2 
 xxx…x: bits of frac 

 Cases 
  exp = 000…0, frac = 000…0 

 Represents zero value 

 Note distinct values: +0 and –0 (why?) 

 exp = 000…0, frac ≠ 000…0 

 Numbers very close to 0.0 

 Lose precision as get smaller 

 Equispaced 
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Special Values 

 Special condition:   exp = 111…1 

 

 Case:   exp = 111…1,   frac = 000…0 

 Represents value  (infinity) 

 Operation that overflows 

 Both positive and negative 

 E.g., 1.0/0.0 = −1.0/−0.0 = +,  1.0/−0.0 = − 

 

 Case:   exp = 111…1,   frac ≠ 000…0 

 Not-a-Number (NaN) 

 Represents case when no numeric value can be determined 

 E.g., sqrt(–1),  − ,   0 
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Interesting Numbers 
Description exp frac Numeric Value 

 Zero 00…00 00…00 0.0 

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022} 

 Single ≈ 1.4 x 10–45 

 Double ≈ 4.9 x 10–324 

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022} 

 Single ≈ 1.18 x 10–38 

 Double ≈ 2.2 x 10–308 

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022} 

 Just larger than largest denormalized 

 One 01…11 00…00 1.0 

  Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023} 

 Single ≈ 3.4 x 1038 

 Double ≈ 1.8 x 10308 

{single,double} 
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Today: Floating Point 

 Background: Fractional binary numbers 

 Example and properties 

 IEEE floating point standard: Definition 

 Floating point in C 

 Summary 
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Floating Point in C 

 C Guarantees Two Levels 
float single precision 

double double precision 

 Conversions/Casting 
Casting between int, float, and double changes bit representation 

 double/float → int 

 Truncates fractional part 

 Like rounding toward zero 

 Not defined when out of range or NaN: Generally sets to TMin 

 int → double 

 Exact conversion, as long as int has ≤ 53 bit word size 

 int → float 

 Will round according to rounding mode 
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Today: Floating Point 

 Background: Fractional binary numbers 

 Example and properties 

 IEEE floating point standard 

 Rounding, addition, multiplication 

 Floating point in C 

 Summary 
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Floating Point Operations: Basic Idea 

 x +f y = Round(x + y) 

 

 x f y = Round(x  y) 

 

 Basic idea 

 First compute exact result 

 Make it fit into desired precision 

 Possibly overflow if exponent too large 

 Possibly round to fit into frac 



40 

Saint Louis University 

Rounding 

 Rounding Modes (illustrate with $ rounding) 

 

  $1.40 $1.60 $1.50 $2.50 –$1.50 

 Towards zero $1 $1 $1 $2 –$1 

 Round down (−) $1 $1 $1 $2 –$2 

 Round up (+)  $2 $2 $2 $3 –$1 

 Nearest Even (default) $1 $2 $2 $2 –$2 
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Closer Look at Round-To-Even 
 Default Rounding Mode 

 Hard to get any other kind without dropping into assembly 

 All others are statistically biased 

 Sum of set of positive numbers will consistently be over- or under- 
estimated 

 

 Applying to Other Decimal Places / Bit Positions 

 When exactly halfway between two possible values 

 Round so that least significant digit is even 

 E.g., round to nearest hundredth 

 7.8949999 7.89 (Less than half way) 

 7.8950001 7.90 (Greater than half way) 

 7.8950000 7.90 (Half way—round up) 

 7.8850000 7.88 (Half way—round down) 



42 

Saint Louis University 

Rounding Binary Numbers 

 Binary Fractional Numbers 
 “Even” when least significant bit is 0 

 “Half way” when bits to right of rounding position = 100…2 

 

 Examples 
 Round to nearest 1/4 (2 bits right of binary point) 

Value Binary Rounded Action Rounded Value 

2 3/32 10.000112 10.002 (<1/2—down) 2 

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4 

2 7/8 10.111002 11.002 (  1/2—up) 3 

2 5/8 10.101002 10.102 (  1/2—down) 2 1/2 
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Scientific Notation Multiplication 

 2.5 × 103 × (3.0 × 102) = ? 

 Compute result by pieces: 

 Sign :   signleft * signright = 1*1 = 1 

 Significand :  Mleft * Mright = 2.5 * 3.0 = 7.5 

 Exponent :   Eleft + Eright = 3 + 2 = 5 

 

Result: 7.5 × 105 
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FP Multiplication 

 (–1)s1 M1  2E1   x   (–1)s2 M2  2E2 

 Exact Result: (–1)s M  2E 

 Sign s:   s1 ^ s2 

 Significand M:  M1 x M2 

 Exponent E:  E1 + E2 

 

 Fixing 

 If M ≥ 2, shift M right, increment E 

 If E out of range, overflow  

 Round M to fit frac precision 

 

 Implementation 

 Biggest chore is multiplying significands 
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Scientific Notation Addition 

 2.5 × 103 + (3.0 × 102) = ? 

 Assume Eleft is larger that Eright 

 Align by decimal point: 

 Significand :  
    2.5 

   + .3 

    2.8 

 

 Exponent :   E = Eleft = 3 

 

Result: 2.8 × 103 



46 

Saint Louis University 

Floating Point Addition 

 (–1)s1 M1  2E1   +   (-1)s2 M2  2E2 

Assume E1 > E2 

 

 Exact Result: (–1)s M  2E 

Sign s, significand M:  

 Result of signed align & add 

Exponent E:  E1 

 

 Fixing 
If M ≥ 2, shift M right, increment E  

if M < 1, shift M left k positions, decrement E by k 

Overflow if E out of range 

Round M to fit frac precision 

(–1)s1 M1  

(–1)s2 M2  

E1–E2 

+ 

(–1)s M 

Get binary points lined up 



47 

Saint Louis University 

Mathematical Properties of FP Add 

 Compare to those of Abelian Group 

 Commutative? 

 (a + b) = (b + a) 

 

 Associative? 

 Overflow and inexactness of rounding 

 (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14 

Yes 

No 
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Mathematical Properties of FP Mult 

 Compare to Commutative Ring 

 Multiplication Commutative? 

 Ex: (1e20*1e-20)=(1e-20*1e20) 

 

 Multiplication is Associative? 

 Possibility of overflow, inexactness of rounding 

 Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20 

 

 Multiplication distributes over addition? 

 Possibility of overflow, inexactness of rounding 

 1e20*(1e20-1e20)= 0.0,  1e20*1e20 – 1e20*1e20 = NaN 

Yes 

No 

No 
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Summary 

 Represents numbers of form M x 2E 

 

 One can reason about operations independent of 
implementation 

 As if computed with perfect precision and then rounded 

 

 Not the same as real arithmetic 

 Violates associativity/distributivity 

 Makes life difficult for compilers & serious numerical applications 
programmers 


