CSCI 3200: Programming Languages Parsing Handout

FIRST and FOLLOW sets

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or e
can be added to any FIRST set.

1. If X is a terminal, then FIRST(X) = {X}
2. If X is a nonterminal, and FIRST(X) = Y1Y5...Y,, is a production rule, then:

e Everything in FIRST(Y7) is in FIRST(X)

e If V7 is nullable, meaning the production Y; — € exists, then everything in FIRST(Y3) is also in
FIRST(X)

e If both Y; and Y5 are nullable, meaning both Y7 — ¢ and Y5 — € exist, then everything in
FIRST(Y3) is in FIRST(X). Continue for all Y, that can be nulled

3. If X — ¢, then add e to FIRST(X)

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to
any FOLLOW set:

e Place § in FOLLOW(S), where S is the start symbol, and § is the end-of-input marker
e If there is a production rule X — aAQB, then everything in FIRST(S) except ¢ is in FOLLOW(A)

e If there is a production rule X — «A, or a production X — @A where § is nullable (contains 8 — ¢€),
then everything in FOLLOW(X) is in FOLLOW(A)

For example, given our LL(1) grammar:
S—FE
E—TFE
E' —+TE" | ¢
T— FT’
T — «FT' | ¢
F—(E) | id

We can compute the FIRST sets as follows. We get the sets for F, T’, and E’ by directly inspecting their
productions. We get the sets for S, E, and T by applying rule 2 above.

FIRST(S) = FIRST(E) = { (,id }
FIRST(E) = FIRST(T) = { (, id }
FIRST(E') = { +, ¢ }
FIRST(T) = FIRST(F) = { (,id }
FIRST(T') = { *, ¢ }
FIRST(F) = { (,id }

CSCI 3200: Programming Languages Parsing Handout

Once we have those, then we can compute the FOLLOW sets. For each nonterminal we identify each
production the nonterminal appears in and include the relevant FIRST and FOLLOW sets as appropriate.
For example, FOLLOW (F') includes FIRST(T”) because T” appears directly after F' in rules 4 and 5, and
FOLLOW(F) includes FOLLOW(T') and FOLLOW(T"”) because 7" is nullable in rules 4 and 5.

FOLLOW(S) = { § }
FOLLOW(E) = {) } UFOLLOW(S) = {), $ }
FOLLOW(E') = FOLLOW(E) = {), $ }
FOLLOW(T) = FIRST(E’) U FOLLOW(E) U FOLLOW(E')= { +,), $ }
FOLLOW(T’) = FOLLOW(T) = { +,), $ }

(

FOLLOW(F) = FIRST(T") U FOLLOW(T) U FOLLOW(T") = { *, +,), § }

Constructing an LL(1) Parsing Table

The predictive parsing table M[A, z] is generated using the FIRST and FOLLOW sets. The table has a row
for each nonterminal in the grammar, and a column for each possible input symbol. The contents of each
cell are a grammar production.

Remember that we are trying to parse an LL(1) grammar, which means that we only need to look at the
leftmost symbol in the input string to know which production to apply, and that there can only be one valid
sequence of productions to that symbol. Thus, we have two intiutions for how to build the parse table:

1. For each input symbol, we look at the FIRST sets of each nonterminal to see which ones can produce
that input symbol.

2. For each nullable nonterminal, we look at their FOLLOW sets to see when we might apply the empty
string (€) production.

More formally: to generate the table, for each production rule A — «, do the following:

1. If & can derive a string starting with a terminal z (if = is in FIRST(A)), then add A — « to M[A, z]

2. If « is nullable (can derive the empty string ¢), then for all « that can follow A (z in FOLLOW(A)),
add A — a to M[A,z]

3. Any cell not assigned a production in this manner implicitly generates an error

Nonterminals S, E, T, and F are easiest, given that they only have one production each. We apply the first
rule above- in each case, the FIRST set contains only (and $, so we put the relevant productions into those
cells.

For E’', we first apply rule 1 from above, which gives the production in cell M[E’,+]. We also notice that E’
is nullable, so we apply the E/ — € production for each terminal in FOLLOW(E’), which gives cells M[E’))]
and M[E’$].

CSCI 3200: Programming Languages

Parsing Handout

. Input Symbol
Non-Terminal d ‘ T = ‘ (‘) ‘ g

S S—FE S—FE

E E —TFE E —TFE

E' E' — 4+TFE' E — e E — e
T T — FT’ T — FT’

T T — e T — xFT’ T — e T — €
F F—id F — (E)

For T", we again apply rule 1 from above, which gives the production in cell M[T”,*]. We again notice that T’
is nullable, so we apply the T" — ¢ production for each terminal in FOLLOW/(T”), which gives cells M[T",+],
M[T"))], and M[T",9].

Table-driven LL(1) Parsing

Parsing can now be done with a stack machine, where the stack holds the current derivation. Initialize the
stack with the start and the end-of-input symbol. At each step, we look at the leftmost nonterminal A in
the derivation and the leftmost terminal z in the input string. We then look up cell M[A, z] in the parse
table and apply the production there. If no rule exists in the table at that location, then there is a syntax
error and the grammar does not accept the input string. For example, to parse the input string 1+2*3:

Stack Input Table Cell Action Match
S$ 142*3$ M][S,id] S—FE
E$ 1+42*3$ MIE,id] E—TFE
TE'$ 1+2*3% M|[T,id] T— FT'
FT'E'$ 1+2*3% M[F, id] F—id
idT'E'$ 142*3$ MATCH id(1)
T'E'$ +2*3$ M[T",+] T — ¢
E'S +2%*3$ M[E',+] E' — +TFE'
+TFE'S$ +2%*3$ MATCH +
TE'$ 2*3% M][T,id] T— FT'
FT'E'$ 2*3% M[F,id] F—id
idT'E'$ 2*3% MATCH id(2)
T'E'$ *3$ M[T"*] T — xFT’
*FT'E'$ *3% MATCH &
FT'E'$ 3% M[F,id] F—id
idT'E'$ 3% MATCH id(3)
T'E'$ $ M[T",$] T — ¢
E'$ $ MI[E'.$] E' —¢
$ $ MATCH $

