
System Calls

1

David Ferry
CSCI 2510 – Principles of Computing Systems

Saint Louis University
St. Louis, MO 63103



Example of
Policy & Mechanism

Policy describes how a system should work.

Mechanism implements policies. 
● Mechanism should not dictate restrictions to policy

System calls:
● OS should provide safety and access control
● System call mechanism must support that



“System” call? As opposed to what?
Consider example program:

int max( int a, int b ){
if ( a > b ) return a; else return b;

}

int main( int argc, char* argv[] ){
int z = max( 5, 10 );
char buffer[ bufferSize ];
int bytes = snprintf( buffer, bufferSize, “Max is %d”, z );
write( STDOUT_FILENO, buffer, bytes);

}



“System” call? As opposed to what?
Consider example program:

int max( int a, int b ){
if ( a > b ) return a; else return b;

}

int main( int argc, char* argv[] ){
int z = max( 5, 10 );
char buffer[ bufferSize ];
int bytes = snprintf( buffer, bufferSize, “Max is %d”, z );
write( STDOUT_FILENO, buffer, bytes);

}

Implemented by
our program.



“System” call? As opposed to what?
Consider example program:

int max( int a, int b ){
if ( a > b ) return a; else return b;

}

int main( int argc, char* argv[] ){
int z = max( 5, 10 );
char buffer[ bufferSize ];
int bytes = snprintf( buffer, bufferSize, “Max is %d”, z );
write( STDOUT_FILENO, buffer, bytes);

}

Implemented by
C standard library.

Implemented by
our program.



“System” call? As opposed to what?
Consider example program:

int max( int a, int b ){
if ( a > b ) return a; else return b;

}

int main( int argc, char* argv[] ){
int z = max( 5, 10 );
char buffer[ bufferSize ];
int bytes = snprintf( buffer, bufferSize, “Max is %d”, z );
write( STDOUT_FILENO, buffer, bytes);

} Implemented by the operating system
• Needs OS cooperation to work
• AKA “System call” – call to the operating system

Implemented by
C standard library.

Implemented by
our program.



Where does each code fragment 
reside?

Imagine the entire memory of a machine:

Operating 
System

0x0

0xFFFF…

Kernel
Space

User
Space



Where does each code fragment 
reside?

Imagine the entire memory of a machine:

Operating 
System

0x0

0xFFFF…

Program

Program

Program

Kernel
Space

User
Space



Where does each code fragment 
reside?

Imagine the entire memory of a machine:

Operating 
System

0x0

0xFFFF…

Program

Program

Program

Kernel
Space

User
Space

Library



User code

Global scope
(static) variables

Local scope
(stack) variables

Dynamically
Allocated memory
(malloc)

Where does each code fragment 
reside?

Imagine the entire memory of a machine:

Operating 
System

0x0

0xFFFF…

Program

Program

Program

Kernel
Space

User
Space

.heap

.stack

Library

.text

.data



Single-program function calls

Operating 
System

Program

Program

Program

Kernel
Space

User
Space

.text

.data

.heap

.stack

1. Code executing at some
place in .text section

2. Execution jumps to
another place in .text

3. Eventually jumps back

Library

1

2



Library function calls

Operating 
System

Program

Program

Program

Kernel
Space

User
Space

.text

.data

.heap

.stack

1. Code executing at some
place in .text section

2. Execution jumps to
.text section of a library
residing in userspace

3. Eventually jumps back

The library is said
to be mapped
into the program.

Library

Library

1

2



System calls

Operating 
System

Program

Program

Program

Kernel
Space

User
Space

.text

.data

.heap

.stack

1. Code executing at some
place in .text section

2. Needs to execute code
somewhere in operating
system, crossing the
kernelspace boundary

Library

1

?



Operating 
System

Program

Program

Program

Kernel
Space

User
Space

.text

.data

.heap

.stack

Library

Difficulties:
1) We can’t give user programs 

access to OS memory like we 
can to system libraries

2) Need to protect system and 
other users from unauthorized 
access

System calls
1. Code executing at some

place in .text section
2. Needs to execute code

somewhere in operating
system, crossing the
kernelspace boundary



Being Careful About Access to 
OS

What bad things can happen if a user program can 
read, write, or execute in the OS memory?
• The OS enforces access control

(e.g. file read/write/delete, event permissions)
• The OS stores and authenticates secrets

(e.g. password authentication)

Allowing unprivileged access circumvents OS security 
and policies.

Question: How does a user program achieve OS       
      tasks without getting access to the OS?



System Call Mechanism

1. User program requests OS services
2. User program stops executing, hands execution 

over to OS
3. OS determines whether request is valid and 

allowable for user
4. OS performs service, if valid
5. OS returns a status code to user program
6. OS stops executing, hands execution back to 

user program

*Main point: OS code determines when/how to run.



Low Level Implementation

Low level mechanisms are finicky, for example, recall how a 
single function call is implemented in assembly. 

int z = max( 5, 10 )

Making a function call at the low level…
1. Arguments stored in registers or on stack

(depends on what ISA you’re using)
2. Unconditional jump to function code
3. Update stack and base pointers
4. Execute function code
5. Store return value in known place
6. Unconditional jump back to calling code
7. Restore stack



32-bit x86 ISA Function Call

int z = max( 5, 10 )

Making a function in x86…
1. Arguments stored on stack
2. Unconditional jump to 

function code
3. Update stack and base pointers
4. Execute function code
5. Store return value in 

known place
6. Unconditional jump back to calling code
7. Restore stack

In x86:
pushl $10
pushl $5



32-bit x86 ISA Function Call

int z = max( 5, 10 )

Making a function in x86…
1. Arguments stored on stack
2. Unconditional jump to 

function code
3. Update stack and base pointers
4. Execute function code
5. Store return value in 

known place
6. Unconditional jump back to calling code
7. Restore stack

In x86:
pushl $10
pushl $5
call  max



32-bit x86 ISA Function Call

int z = max( 5, 10 )

Making a function in x86…
1. Arguments stored on stack
2. Unconditional jump to 

function code
3. Update stack and base pointers
4. Execute function code
5. Store return value in 

known place
6. Unconditional jump back to calling code
7. Restore stack

In x86:
pushl $10
pushl $5
call  max
pushl %ebp
movl  %esp, %ebp



32-bit x86 ISA Function Call

int z = max( 5, 10 )

Making a function in x86…
1. Arguments stored on stack
2. Unconditional jump to 

function code
3. Update stack and base pointers
4. Execute function code
5. Store return value in 

known place
6. Unconditional jump back to calling code
7. Restore stack

In x86:
pushl $10
pushl $5
call  max
pushl %ebp
movl  %esp, %ebp
<function code executes>



32-bit x86 ISA Function Call

int z = max( 5, 10 )

Making a function in x86…
1. Arguments stored on stack
2. Unconditional jump to 

function code
3. Update stack and base pointers
4. Execute function code
5. Store return value in 

known place
6. Unconditional jump back to calling code
7. Restore stack

In x86:
pushl $10
pushl $5
call  max
pushl %ebp
movl  %esp, %ebp
<function code executes>
<move return val to eax>



32-bit x86 ISA Function Call

int z = max( 5, 10 )

Making a function in x86…
1. Arguments stored on stack
2. Unconditional jump to 

function code
3. Update stack and base pointers
4. Execute function code
5. Store return value in 

known place
6. Unconditional jump back to calling code
7. Restore stack

In x86:
pushl $10
pushl $5
call  max
pushl %ebp
movl  %esp, %ebp
<function code executes>
<move return val to eax>
popl  %ebp
return
popl  %edx
popl  %edx



Implementing System Call 
Mechanism

Particulars vary by OS convention, processor instruction 
set architecture, and over time.

1. User program requests OS services
2. User program stops executing, hands execution over 

to OS
3. OS determines whether request is valid and 

allowable for user
4. OS performs service, if valid
5. OS returns a status code to user program
6. OS stops executing, hands execution back to user 

program



Implementing System Call 
Mechanism

Particulars vary by OS convention, processor 
instruction set architecture, and over time.

1. User program requests OS service
– Need to specify what service and with what arguments, 

e.g. open() needs to know what file to open and with 
what permissions

– Done by placing a specific system call number in 
processor register, and arguments in other registers

– E.g. on Linux see “man 2 syscall” to see architecture 
calling conventions listed explicitly, see “man 2 
syscalls” to see a comprehensive list of system calls



Implementing System Call 
Mechanism

Particulars vary by OS convention, processor instruction 
set architecture, and over time.

2. User program stops executing, hands execution over to 
OS
– Executes a special assembly instruction to initiate the system 

call, see “man 2 syscall” for details. Called lots of different 
things but “software interrupt” and “trap” are common 

– Stops execution of user program, and transfers execution to a 
specific known starting point in operating system

3. OS determines whether request is valid and allowable 
for user
– OS checks what service is requested by looking at processor 

registers, and the OS determines if the user program is allowed 
to do what it wants to do



Implementing System Call 
Mechanism

Particulars vary by OS convention, processor 
instruction set architecture, and over time.

4. OS performs service, if valid
– OS is in total control at this point, executing OS code 

only. This only happens if the OS system call entry point 
has determined that the actions are valid. 

5. OS returns a status code to user program
– Loads a single integer value in a specific register

6. OS stops executing, hands execution back to 
user program
– Execution resumes in user program



System calls

Operating 
System

Program

Program

Program

Kernel
Space

User
Space

.text

.data

.heap

.stack

1. Code executing at some
place in .text section

2. Code requests system call
3. OS executes service on

user program’s behalf
4. OS returns control to

user program

Library

System Call

3

4

2
1


	Slide 1
	Being Careful About Access to OS
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Where does each code fragment reside?
	Where does each code fragment reside?
	Where does each code fragment reside?
	Where does each code fragment reside?
	Single-program function calls
	Library function calls
	System calls
	System calls
	Slide 15
	System Call Mechanism
	Low Level Implementation
	32-bit x86 ISA Function Call
	32-bit x86 ISA Function Call
	32-bit x86 ISA Function Call
	32-bit x86 ISA Function Call
	32-bit x86 ISA Function Call
	32-bit x86 ISA Function Call
	Implementing System Call Mechanism
	Implementing System Call Mechanism
	Implementing System Call Mechanism
	Implementing System Call Mechanism
	System calls

