
Carnegie Mellon

1

Saint Louis University

Data Representation in Memory

CSCI 2400 / ECE 3217: Computer Architecture

Instructor:

David Ferry

Slides adapted from Bryant & O’Hallaron’s slides
via Jason Fritts

Carnegie Mellon

2

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

3

Saint Louis University

Byte-Oriented Memory Organization

 Modern processors: Byte-Addressable Memory
 Conceptually a very large array of bytes

 Each byte has a unique address

 Processor address space determines address range:

 32-bit address space has 232 unique addresses: 4GB max

– 0x00000000 to 0xffffffff (in decimal: 0 to 4,294,967,295)

 64-bit address space has 264 unique addresses: ~ 1.8x1019 bytes max

– 0x0000000000000000 to 0xffffffffffffffff

– Enough to give everyone on Earth about 2 Gb

 Address space size is not the same as processor size!

 E.g.: The original Nintendo was an 8-bit processor with a 16-bit
address space

• • •

Carnegie Mellon

4

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

5

Saint Louis University

Why Use Bits & Binary?

0.0V

0.5V

2.8V

3.3V

0 1 0

 Digital transistors operate in high and low voltage ranges

 Voltage Range dictates Binary Value on wire
 high voltage range (e.g. 2.8V to 3.3V) is a logic 1

 low voltage range (e.g. 0.0V to 0.5V) is a logic 0

 voltages in between are indefinite values

 Ternary or quaternary systems have practicality problems

Carnegie Mellon

6

Saint Louis University

Bits & Bytes

 Computers use bits:
 a “bit” is a base-2 digit

 {L, H} => {0, 1}

 Single bit offers limited range, so grouped in bytes
 1 byte = 8 bits

 a single datum may use multiple bytes

 Data representation 101:
 Given N bits, can represent 2N unique values

 Letters of the alphabet?

 Colors?

Carnegie Mellon

7

Saint Louis University

Encoding Byte Values

 Processors generally use multiples of Bytes
 common sizes: 1, 2, 4, 8, or 16 bytes

 Intel data names:

 Byte 1 byte (8 bits) 28 = 256

 Word 2 bytes (16 bits) 216 = 65,536

 Double word 4 bytes (32 bits) 232 = 4,294,967,295

 Quad word 8 bytes (64 bits)
 264 = 18,446,744,073,709,551,616

Unfortunately, these names are not standard
so we’ll often use C data names instead

(but these vary in size too… /sigh)

Carnegie Mellon

8

Saint Louis University

C Data Types

C Data Type Typical 32-bit Intel IA32 x86-64

 char 1 byte 1 1

 short 2 2 2

 int 4 4 4

 long 4 4 8

 long long 8 8 8

 float 4 4 4

 double 8 8 8

 long double 8 10/12 10/16

 pointer (addr) 4 4 8

32-bit 64-bit

key
differences

Carnegie Mellon

9

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

10

Saint Louis University

Encoding Byte Values

 1 Byte = 8 bits
 Binary: 000000002 to 111111112

 A byte value can be interpreted in many ways!
 depends upon how it’s used

 For example, consider byte with: 010101012
 as ASCII text: ‘U’

 as integer: 8510

 as IA32 instruction: pushl %ebp

 the 86th byte of memory in a computer

 a medium gray pixel in a gray-scale image

 could be interpreted MANY other ways…

Carnegie Mellon

11

Saint Louis University

Binary is Hard to Represent!

 Problem with binary – Cumbersome to use
 e.g. approx. how big is: 10100111010100010111010112 ?

 Would be nice if the representation was closer to decimal: 21,930,731

 Let’s define a larger base so that

 for equivalence, R and x must be integers – then 1 digit in R equals x bits

 equivalence allows direct conversion between representations

 two options closest to decimal:

 octal: (base eight)

 hexadecimal: (base sixteen)

𝑹𝟏 = 𝟐𝒙

𝟖𝟏 = 𝟐𝟑

𝟏𝟔𝟏 = 𝟐𝟒

Carnegie Mellon

12

Saint Louis University

Representing Binary Efficiently

 Octal or Hexadecimal?
 binary : 10100111010100010111010112

 octal: 1235213538

 hexadecimal number: 14EA2EB16

 decimal: 21930731

 Octal and Hex are closer in size to decimal, BUT…

 How many base-R digits per byte?
 Octal: 8/3 = 2.67 octal digits per byte -- BAD

 Hex: 8/4 = 2 hex digits per byte -- GOOD

Hexadecimal wins: 1 hex digit  4 bits

Carnegie Mellon

13

Saint Louis University

Expressing Byte Values

 Common ways of expressing a byte
 Binary: 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal: 0016 to FF16

 Base-16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 in C/C++ programming languages, D316 written as either

– 0xD3

– 0xd3

Juliet:

"What's in a name? That which we call a rose
By any other name would smell as sweet."

Carnegie Mellon

14

Saint Louis University

 Decimal vs
Binary vs
Hexadecimal

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

18 10010 12

Carnegie Mellon

15

Saint Louis University

Convert Between Binary and Hex

 Convert Hexadecimal to Binary
 Simply replace each hex digit with its equivalent 4-bit binary sequence

 Example: 6 D 1 9 F 3 C16

 Convert Binary to Hexadecimal
 Starting from the radix point, replace each sequence of 4 bits with the

equivalent hexadecimal digit

 Example: 1011001000110101110101100010100112

0110 1101 0001 1001 1111 0011 11002

1 6 4 6 B A C 5 316

Carnegie Mellon

16

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

17

Saint Louis University

Unsigned Integers – Binary

 Computers store Unsigned Integer numbers in Binary (base-2)
 Binary numbers use place valuation notation, just like decimal

 Decimal value of n-bit unsigned binary number:

0 1 1 1 0 1 0 1

27 26 25 24 23 22 21 20

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝒂𝒊 ∗ 𝟐
𝒊

𝒏−𝟏

𝒊=𝟎

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝟎 ∗ 𝟐
𝟕 + 𝟏 ∗ 𝟐𝟔 + 𝟏 ∗ 𝟐𝟓 + 𝟏 ∗ 𝟐𝟒 + 𝟎 ∗ 𝟐𝟑 + 𝟏 ∗ 𝟐𝟐 + 𝟎 ∗ 𝟐𝟏 + 𝟏 ∗ 𝟐𝟎

= 𝟐𝟔 + 𝟐𝟓 + 𝟐𝟒 + 𝟐𝟐 + 𝟐𝟎

= 𝟔𝟒 + 𝟑𝟐 + 𝟏𝟔 + 𝟒 + 𝟏 = 𝟏𝟏𝟕𝟏𝟎

Carnegie Mellon

18

Saint Louis University

Unsigned Integers – Base-R

 Convert Base-R to Decimal
 Place value notation can similarly determine decimal value of any base, R

 Decimal value of n-digit base r number:

 Example:

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝒂𝒊 ∗ 𝒓
𝒊

𝒏−𝟏

𝒊=𝟎

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝟑 ∗ 𝟖
𝟐 + 𝟏 ∗ 𝟖𝟏 + 𝟕 ∗ 𝟖𝟎

= 𝟑 ∗ 𝟔𝟒 + 𝟏 ∗ 𝟖 + 𝟕 ∗ 𝟏

= 𝟏𝟗𝟐 + 𝟖 + 𝟕 = 𝟐𝟎𝟕𝟏𝟎

𝟑𝟏𝟕𝟖 = ? 𝟏𝟎

Carnegie Mellon

19

Saint Louis University

Unsigned Integers – Hexadecimal

 Commonly used for converting hexadecimal numbers
 Hexadecimal number is an “equivalent” representation to binary, so

often need to determine decimal value of a hex number

 Decimal value for n-digit hexadecimal (base 16) number:

 Example:

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝒂𝒊 ∗ 𝟏𝟔
𝒊

𝒏−𝟏

𝒊=𝟎

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝟗 ∗ 𝟏𝟔
𝟐 + 𝟏𝟒 ∗ 𝟏𝟔𝟏 + 𝟒 ∗ 𝟏𝟔𝟎

= 𝟗 ∗ 𝟐𝟓𝟔 + 𝟏𝟒 ∗ 𝟏𝟔 + 𝟒 ∗ 𝟏

= 𝟐𝟑𝟎𝟒 + 𝟐𝟐𝟒 + 𝟒 = 𝟐𝟓𝟑𝟐𝟏𝟎

𝟗𝐄𝟒𝟏𝟔 = ? 𝟏𝟎

Carnegie Mellon

20

Saint Louis University

Unsigned Integers – Convert Decimal to Base-R

 Also need to convert decimal numbers to desired base

 Algorithm for converting unsigned Decimal to Base-R
a) Assign decimal number to NUM

b) Divide NUM by R

 Save remainder REM as next least significant digit

 Assign quotient Q as new NUM

c) Repeat step b) until quotient Q is zero

 Example: 𝟖𝟑𝟏𝟎 = ? 𝟕

NUM R REM Q

 𝟖𝟑 / 𝟕

 𝟏𝟏 𝒓 𝟔

 𝟏𝟏 / 𝟕

 𝟏 𝒓 𝟒

 𝟏 / 𝟕

 𝟎 𝒓 𝟏

= 𝟏𝟒𝟔𝟕

least significant digit

most significant digit

Carnegie Mellon

21

Saint Louis University

Unsigned Integers – Convert Decimal to Binary

 Example with Unsigned Binary: 𝟓𝟐𝟏𝟎 = ? 𝟐

NUM R REM Q

 𝟓𝟐 / 𝟐

 𝟐𝟔 𝒓 𝟎

 𝟐𝟔 / 𝟐

 𝟏𝟑 𝒓 𝟎

= 𝟏𝟏𝟎𝟏𝟎𝟎𝟐

least significant digit

most significant digit

 𝟏𝟑 / 𝟐

 𝟔 𝒓 𝟏

 𝟔 / 𝟐

 𝟑 𝒓 𝟎

 𝟑 / 𝟐

 𝟏 𝒓 𝟏

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

Carnegie Mellon

22

Saint Louis University

Unsigned Integers – Convert Decimal to Hexadecimal

 Example with Unsigned Hexadecimal: 𝟒𝟑𝟕𝟏𝟎 = ? 𝟏𝟔

NUM R REM Q

𝟒𝟑𝟕 / 𝟏𝟔

 𝟐𝟕 𝒓 𝟓

= 𝟏𝐁𝟓𝟏𝟔

least significant digit

most significant digit

 𝟐𝟕 / 𝟏𝟔

 𝟏 𝒓 𝟏𝟏

 𝟏 / 𝟏𝟔

 𝟎 𝒓 𝟏

Carnegie Mellon

23

Saint Louis University

Unsigned Integers – Ranges

 Range of Unsigned binary numbers based on number of bits
 Given representation with n bits, min value is always sequence

 0....0000 = 0

 Given representation with n bits, max value is always sequence

 1....1111 = 2n – 1

 So, ranges are:

 unsigned char:

 unsigned short:

 unsigned int:

1 1    1 1 1 1

2n-1 2n-2 23 22 21 20
= 𝟐𝒊
𝒏−𝟏

𝒊=𝟎

 = 𝟐𝒏 − 𝟏

𝟎 𝟐𝟓𝟓 𝟐𝟖 − 𝟏

𝟎 𝟔𝟓, 𝟓𝟑𝟓 𝟐𝟏𝟔 − 𝟏

𝟎 𝟒, 𝟐𝟗𝟒, 𝟗𝟔𝟕, 𝟐𝟗𝟓 𝟐𝟑𝟐 − 𝟏

Carnegie Mellon

24

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

25

Saint Louis University

Signed Integers – Binary

 Signed Binary Integers converts half of range as negative

 Signed representation identical, except for most significant bit
 For signed binary, most significant bit indicates sign

 0 for nonnegative

 1 for negative

 Must know number of bits for signed representation

-27 26 25 24 23 22 21 20

Signed Integer representation:

 27 26 25 24 23 22 21 20

Unsigned Integer representation:

Place value of
most significant bit

is negative
for signed binary

Carnegie Mellon

26

Saint Louis University

Signed Integers – Binary

 Decimal value of n-bit signed binary number:

 Positive (in-range) numbers have same representation:

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = −𝒂𝒏−𝟏 ∗ 𝟐
𝒏−𝟏 + 𝒂𝒊 ∗ 𝟐

𝒊

𝒏−𝟐

𝒊=𝟎

0 1 1 0 1 0 0 1

-27 26 25 24 23 22 21 20

Signed Integer representation:

0 1 1 0 1 0 0 1

 27 26 25 24 23 22 21 20

Unsigned Integer representation:

= 𝟏𝟎𝟓𝟏𝟎

= 𝟏𝟎𝟓𝟏𝟎

Carnegie Mellon

27

Saint Louis University

Signed Integers – Binary

 Only when most significant bit set does value change

 Difference between unsigned and signed integer values is 2N

0 1 1 1 0 1 0 0 1

-27 26 25 24 23 22 21 20

Signed Integer representation:

0 1 1 1 0 1 0 0 1

 27 26 25 24 23 22 21 20

Unsigned Integer representation:

= 𝟏𝟎𝟓 + 𝟏𝟐𝟖𝟏𝟎
= 𝟐𝟑𝟑𝟏𝟎

= 𝟏𝟎𝟓 − 𝟏𝟐𝟖𝟏𝟎
= −𝟐𝟑𝟏𝟎

Carnegie Mellon

28

Saint Louis University

Quick Check:

For an 8-bit representation:

 What bit pattern has the minimum value?

 What bit pattern has the maximum value?

 What bit pattern represents 0?

 What bit pattern represents -1?

Carnegie Mellon

29

Saint Louis University

Signed Integers – Ranges

 Range of Signed binary numbers:
 Given representation with n bits, min value is always sequence

 100....0000 = – 2n-1

 Given representation with n bits, max value is always sequence

 011....1111 = 2n-1 – 1

 So, ranges are:

 C data type # bits Unsigned range Signed range

char 8 0  255 -128  127

short 16 0  65,535 -32,768  32,767

int 32 0  4,294,967,295 -2,147,483,648  2,147,483,647

Carnegie Mellon

30

Saint Louis University

Signed Integers – Convert to/from Decimal

 Convert Signed Binary Integer to Decimal
 Easy – just use place value notation

 two examples given on last two slides

 Convert Decimal to Signed Binary Integer
 MUST know number of bits in signed representation

 Algorithm:

a) Convert magnitude (abs val) of decimal number to unsigned binary

b) Decimal number originally negative?

– If positive, conversion is done

– If negative, perform negation on answer from part a)

» zero extend answer from a) to N bits (size of signed repr)

» negate: flip bits and add 1

Carnegie Mellon

31

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 A)

−𝟑𝟕𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

NUM R REM Q

 𝟑𝟕 / 𝟐

 𝟏𝟖 𝒓 𝟏

 𝟏𝟖 / 𝟐

 𝟗 𝒓 𝟎

 𝟗 / 𝟐

 𝟒 𝒓 𝟏

= 𝟏𝟎𝟎𝟏𝟎𝟏𝟐

least significant bit

most significant bit

−𝟑𝟕𝟏𝟎 = ? 𝟐

 𝟒 / 𝟐

 𝟐 𝒓 𝟎

 𝟐 / 𝟐

 𝟏 𝒓 𝟎

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

Carnegie Mellon

32

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 B) -3710 was negative, so perform negation

 zero extend 100101 to 8 bits

 negation

– flip bits:

– add 1:

−𝟑𝟕𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐
𝟎𝟎𝟏𝟎𝟎𝟏𝟎𝟏𝟐

𝟏𝟎𝟎𝟏𝟎𝟏𝟐 𝟎𝟎𝟏𝟎𝟎𝟏𝟎𝟏𝟐

𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟎𝟐

+ 𝟏𝟐

𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐

Can validate answer using
place value notation

Carnegie Mellon

33

Saint Louis University

Quick check:

For an 8-bit representation:

 Convert 6710 into a signed integer

Carnegie Mellon

34

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 A)

𝟔𝟕𝟏𝟎 = ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

NUM R REM Q

 𝟑𝟑 / 𝟐

 𝟏𝟔 𝒓 𝟏

 𝟏𝟔 / 𝟐

 𝟖 𝒓 𝟎

 𝟖 / 𝟐

 𝟒 𝒓 𝟎

= 𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟐

least significant bit

most significant bit

𝟔𝟕𝟏𝟎 = ? 𝟐

 𝟒 / 𝟐

 𝟐 𝒓 𝟎

 𝟐 / 𝟐

 𝟏 𝒓 𝟎

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

 𝟔𝟕 / 𝟐

 𝟑𝟑 𝒓 𝟏

Carnegie Mellon

35

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 B) 6710 was positive, so done

𝟔𝟕𝟏𝟎 = ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟐

Can validate answer using
place value notation

Carnegie Mellon

36

Saint Louis University

Quick check:

For an 8-bit representation:

 Convert -10010 into a signed integer

Carnegie Mellon

37

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 A)

−𝟏𝟎𝟎𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

NUM R REM Q

 𝟏𝟎𝟎 / 𝟐

 𝟓𝟎 𝒓 𝟎

 𝟓𝟎 / 𝟐

 𝟐𝟓 𝒓 𝟎

 𝟐𝟓 / 𝟐

 𝟏𝟐 𝒓 𝟏

= 𝟏𝟏𝟎𝟎𝟏𝟎𝟎𝟐

least significant bit

most significant bit

−𝟏𝟎𝟎𝟏𝟎 = ? 𝟐

 𝟏𝟐 / 𝟐

 𝟔 𝒓 𝟎

 𝟔 / 𝟐

 𝟑 𝒓 𝟎

 𝟑 / 𝟐

 𝟏 𝒓 𝟏

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

Carnegie Mellon

38

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 B) -10010 was negative, so perform negation

 zero extend 100101 to 8 bits

 negation

– flip bits:

– add 1:

−𝟏𝟎𝟎𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟎𝟎𝟏𝟏𝟏𝟎𝟎𝟐
𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟎𝟐

𝟏𝟏𝟎𝟎𝟏𝟎𝟎𝟐 𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟎

𝟏𝟎𝟎𝟏𝟏𝟎𝟏𝟏𝟐

+ 𝟏𝟐

𝟏𝟎𝟎𝟏𝟏𝟏𝟎𝟎𝟐

Can validate answer using
place value notation

Carnegie Mellon

39

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Be careful of range!

 Example:

 A)

 B) -18310 was negative, so perform negation

 zero extend 10110111 to 8 bits // already done

 negation

– flip bits:

– add 1:

−𝟏𝟖𝟑𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟏𝟐 −𝟏𝟖𝟑𝟏𝟎 = ? 𝟐

𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟏𝟐

𝟎𝟏𝟎𝟎𝟏𝟎𝟎𝟎𝟐

+ 𝟏𝟐

𝟎𝟏𝟎𝟎𝟏𝟎𝟎𝟏𝟐 = 𝟕𝟑𝟏𝟎

not -18310… WRONG!

-18310 is not in valid range
for 8-bit signed

Carnegie Mellon

40

Saint Louis University

Representation of Signed Integers

 Multiple possible ways:
 Sign magnitude

 Ones’ Complement

 Two’s Complement (what has been presented)

 Two’s Complement greatly simplifies addition &
subtraction in hardware
 We’ll see why when we cover operations

 Generally the only method still used

Carnegie Mellon

41

Saint Louis University

Representation of Signed Integers

 Why the name Two’s Complement?
 For a w-bit signed representation, we represent -x as 2w – x

 E.g.: consider the 8-bit representation of −𝟑𝟕𝟏𝟎

𝟐𝟏𝟗𝟏𝟎 = 𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐 (unsigned)

−𝟑𝟕𝟏𝟎 = 𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐 (signed)

𝟐𝟖 = 𝟐𝟓𝟔𝟏𝟎

𝟐𝟖− 𝟑𝟕𝟏𝟎 = 𝟐𝟏𝟗𝟏𝟎

Carnegie Mellon

42

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

43

Saint Louis University

char S[6] = "18243";

Representing Strings

 Strings in C
 Represented by array of characters

 Each character encoded in ASCII format

 Standard 7-bit encoding of character set

 Character “0” has code 0x30

 String should be null-terminated

 Final character = 0

 ASCII characters organized such that:

 Numeric characters sequentially increase from 0x30

– Digit i has code 0x30+i

 Alphabetic characters sequentially increase in order

– Uppercase chars ‘A’ to ‘Z’ are 0x41 to 0x5A

– Lowercase chars ‘A’ to ‘Z’ are 0x61 to 0x7A

 Control characters, like <RET>, <TAB>, <BKSPC>, are 0x00 to 0x1A

Intel / Linux

0x31

0x38

0x32

0x34

0x33

0x00

‘1’

‘8’

‘2’

‘4’

‘3’

null
term

Carnegie Mellon

44

Saint Louis University

Representing Strings

 Limitations of ASCII
 7-bit encoding limits set of characters to 27 = 128

 8-bit extended ASCII exists, but still only 28 = 256 chars

 Unable to represent most other languages in ASCII

 Answer: Unicode
 first 128 characters are ASCII

 i.e. 2-byte Unicode for ‘4’: 0x34 -> 0x0034

 i.e. 4-byte Unicode for ‘T’: 0x54 -> 0x00000054

 UTF-8: 1-byte version // commonly used

 UTF-16: 2-byte version // commonly used

 allows 216 = 65,536 unique chars

 UTF-32: 4-byte version

 allows 232 = ~4 billion unique characters

 Unicode used in many more recent languages, like Java and Python

UTF-16 on Intel

0x31

0x00

0x38

0x00

0x32

0x00

0x34

0x00

0x33

0x00

0x00

0x00

‘1’

‘8’

‘2’

‘4’

‘3’

null
term

Carnegie Mellon

45

Saint Louis University

String Representation Links

 ASCII
 http://www.ascii-code.com/

 Unicode
 http://unicode-table.com/en/

http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/
http://unicode-table.com/en/
http://unicode-table.com/en/
http://unicode-table.com/en/
http://unicode-table.com/en/

Carnegie Mellon

46

Saint Louis University

Quick Check:

 Convert the following strings to ASCII-

char school[4] = “SLU”;

char name[6] = “Frank”;

Carnegie Mellon

47

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

48

Saint Louis University

What is a Pointer?

Recall:

 Memory is a contiguous array of individual bytes
 Consider a machine with 16-bit addresses

0x0000

0x0001

0x0002

0x0003

0x0004

Carnegie Mellon

49

Saint Louis University

What is a Pointer?

Recall:

 Memory is a contiguous array of individual bytes
 Consider a machine with 16-bit addresses and 32-bit data

unsigned X = 15398; //0x00003C26

26

3C

00

00

0x0000

0x0001

0x0002

0x0003

0x0004

Carnegie Mellon

50

Saint Louis University

Pointer Representation

 Points to a location in memory

Suppose:

unsigned X = 15398; //0x00003C26

unsigned *ptr = &X; //0xA244

 A pointer is a variable that holds the
address of another variable

 Different compilers and machines assign
different locations to objects

26

3C

00

00

0x44

0xA2

0xA244

0xA245

0xA246

0xA247

0xB710

0xB711

0xB712

0xB713

Carnegie Mellon

51

Saint Louis University

Endianness

 Recall that memory is byte-addressable
 Four bytes in a 32-bit integer, which order are they stored with?

Two ways to store: unsigned X = 15398; //0x00003C26

26

3C

00

00

0x0000

0x0001

0x0002

0x0003

0x0004

00

00

26

3C

0x0000

0x0001

0x0002

0x0003

0x0004

 Little Endian
 Least significant bits stored

first in memory

 Big Endian
 Most significant bits stored

first in memory

Carnegie Mellon

52

Saint Louis University

Quick Check

 Consider the string:
char S[6] = “HELLO”;

 What is S[0] ?

 What is &S[0] ?

 What is S[3]?

 What is &S[3]?

0x48

0x45

0x4C

0x4C

0x4F

0x00

‘H’

‘E’

‘L’

‘L’

‘O’

null
term

0xACED

0xACEE

0xACEF

0xACF0

0xACF1

0xACF2

