Saint Louis University

Data Representation in Memory

CSCl 2400 / ECE 3217: Computer Architecture

Instructor:
David Ferry

Slides adapted from Bryant & O’Hallaron’s slides
via Jason Fritts

Saint Louis University

Data Representation in Memory

m Basic memory organization

Saint Louis University

Byte-Oriented Memory Organization
o s

¢
*

m Modern processors: Byte-Addressable Memory
= Conceptually a very large array of bytes
= Each byte has a unique address
" Processor address space determines address range:
= 32-bit address space has 232 unique addresses: 4GB max
— 0x00000000 to Oxffffffff (in decimal: O to 4,294,967,295)
= 64-bit address space has 254 unique addresses: ~ 1.8x10*° bytes max
— 0x0000000000000000 to Oxfffffffffffffff
— Enough to give everyone on Earth about 2 Gb
= Address space size is not the same as processor size!

= E.g.: The original Nintendo was an 8-bit processor with a 16-bit
address space

Saint Louis University

Data Representation in Memory

Bits & Bytes — basic units of Storage in computers

Saint Louis University

Why Use Bits & Binary?

— 0 b = 1 s =0 —
3.3V —
/‘/\f\/\
2.8V — / \
0.5V —
/—V\J \’\f
0.0V —

m Digital transistors operate in high and low voltage ranges

m Voltage Range dictates Binary Value on wire
= high voltage range (e.g. 2.8V to 3.3V) is a logic 1
= Jow voltage range (e.g. 0.0V to 0.5V) is a logic 0
= voltages in between are indefinite values

m Ternary or quaternary systems have practicality problems

Saint Louis University

Bits & Bytes

m Computers use bits:
= a2 “bit” is a base-2 digit
" {L,H}=>{0, 1}

m Single bit offers limited range, so grouped in bytes
= 1 byte = 8 bits
= asingle datum may use multiple bytes

m Data representation 101:

= Given N bits, can represent 2V unique values
= Letters of the alphabet?
= Colors?

Encoding Byte Values

m Processors generally use multiples of Bytes
= commonsizes: 1, 2,4, 8, or 16 bytes
" |ntel data names:

= Byte 1 byte (8 bits) 28 =256

= Word 2 bytes (16 bits) 26 =65,536

= Double word 4 bytes (32 bits) 232=4,294,967,295
= Quad word 8 bytes (64 bits)

254 =18,446,744,073,709,551,616

Unfortunately, these names are not standard
so we’ll often use C data names instead
(but these vary in size too... /sigh)

Saint Louis University

C Data Types
32-bit 64-bit
Cov e |
char 1 byte
short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8 \
float 4 4 4 key
differences
double 8 8 8
long double 8 10/12 10/16
pointer (addr) 4 4 8

Saint Louis University

Data Representation in Memory

Representing information in binary and hexadecimal

Saint Louis University

Encoding Byte Values

m 1 Byte =8 bits
= Binary: 00000000,t0 11111111,

m A byte value can be interpreted in many ways!

= depends upon how it’s used

m For example, consider byte with: 01010101,

= as ASCII text: ‘U’
= asinteger: 8519
= asIA32 instruction: pushl %ebp

= the 86 byte of memory in a computer
" a medium gray pixel in a gray-scale image .
= could be interpreted MANY other ways...

10

Saint Louis University

Binary is Hard to Represent!

m Problem with binary — Cumbersome to use
= e.g. approx. how bigis: 1010011101010001011101011, ?
" Would be nice if the representation was closer to decimal: 21,930,731

m Let’s define a larger base so that
Rl — 2X
= for equivalence, R and x must be integers — then 1 digit in R equals x bits
= equivalence allows direct conversion between representations
= two options closest to decimal:
= octal: 8l =23 (base eight)
= hexadecimal: 161 = 24 (base sixteen)

1

Saint Louis University

Representing Binary Efficiently

m Octal or Hexadecimal?

= binary : 1010011101010001011101011,
" octal: 123521353,
" hexadecimal number: 14EA2EB
= decimal: 21930731

m Octal and Hex are closer in size to decimal, BUT...

m How many base-R digits per byte?
" Qctal: 8/3 =2.67 octal digits per byte -- BAD
" Hex: 8/4 =2 hexdigits per byte -- GOOD

Hexadecimal wins: 1 hex digit < 4 bits

12

Saint Louis University

Expressing Byte Values

Juliet:
"What's in a name? That which we call a rose
By any other name would smell as sweet."

m Common ways of expressing a byte
= Binary: 00000000,to 11111111,

= Decimal: 0,9to 255,

= Hexadecimal: 00;¢to FFy
= Base-16 number representation
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F
= in C/C++ programming languages, D3¢ written as either
— OxD3
— Oxd3

13

Saint Louis University

Decimal vs 0 0000 0
. 1 0001 1
Binary vs . 0010)
Hexadecimal 3 oo1L 3
4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

=
(00]

10010

=
N

14

Saint Louis University

Convert Between Binary and Hex

m Convert Hexadecimal to Binary

= Simply replace each hex digit with its equivalent 4-bit binary sequence
= Example: 6D19F3C

0110 1101 0001 1001 1111 0011 1100,

m Convert Binary to Hexadecimal
= Starting from the radix point, replace each sequence of 4 bits with the
equivalent hexadecimal digit
= Example: F)l1({0100FllO*Oll‘lOlO’llOO})lO]‘OOll

vl

316

15

Saint Louis University

Data Representation in Memory

o

o

o

m Representing Integers
= Unsigned integers

16

Saint Louis University

Unsigned Integers — Binary

m Computers store Unsigned Integer numbers in Binary (base-2)
= Binary numbers use place valuation notation, just like decimal
= Decimal value of n-bit unsigned binary number:

n—-1

valueqy = z a; 2°
i=0

o111 |0/|1)|0]|1
27 3 22 21 20

| \ \\\\\\>

value;g =027 +1+20 + 125+ 124 +0+23 +1+22+0+21 +1 %20
=264+2>4+2%4+22429
=64+32+16+4+1|=1174,

17

Saint Louis University

Unsigned Integers — Base-R

m Convert Base-R to Decimal

= Place value notation can similarly determine decimal value of any base, R
= Decimal value of n-digit base r number:

n—-1

valuey = z a; *
i=0

= Example: 317g =7 10
value;y =3 8% +1x81+7x8°

=3+x64+1x8+7x1
=192+8+7 |=2074

18

Saint Louis University

Unsigned Integers — Hexadecimal

m Commonly used for converting hexadecimal numbers

= Hexadecimal number is an “equivalent” representation to binary, so
often need to determine decimal value of a hex number

= Decimal value for n-digit hexadecimal (base 16) number:
n—-1

value,y = z a; * 16
i=0

= Example: 9E44¢ =7 10

valuey = 9+ 16% + 14 + 16! + 4 =« 16°
=9%x256+14+16+4*1
= 2304 + 224 + 4 |= 25324,

19

Saint Louis University

Unsigned Integers — Convert Decimal to Base-R

m Also need to convert decimal numbers to desired base

m Algorithm for converting unsigned Decimal to Base-R
a) Assign decimal number to NUM
b) Divide NUM by R
= Save remainder REM as next least significant digit
= Assign quotient Q as new NUM
c) Repeat step b) until quotient Q is zero

m Example: 8319=75
least significant digit

NUM R REM / \

83/7—>11 r 6
11 /7 - 1 r 4 67
1/ 7 - 0 r 1« /

most significant digit

20

Saint Louis University

Unsigned Integers — Convert Decimal to Binary

m Example with Unsigned Binary: 5210=7>

least significant digit

NUM R Q REM \
0 /

52 /2 - 26 r N
26 /2 513 r 0 = 110100,
13 /2 - 6 r 1 /

6 / 2 - 3 r 0 most significant digit

3 /2 -1 r 1

1 /2 - 0 r 1

21

Saint Louis University

Unsigned Integers — Convert Decimal to Hexadecimal
m Example with Unsigned Hexadecimal: 43710 =7 16

least significant digit

NUM R Q REM / \

437 /16 - 27 r 5 N
=1B516
27 /16 - 1 r 11 4

1/16—>Or1\ /

most significant digit

22

Saint Louis University

Unsigned Integers — Ranges

m Range of Unsigned binary numbers based on number of bits

= Given representation with n bits, min value is always sequence
= 0...0000= 0

= Given representation with n bits, max value is always sequence
= 1....1111= 2"-1

" So, ranges are:

= unsigned char: 0 - 255 (28-1)

= unsigned short: 0 - 65535 (216-1)

" unsigned int: 0 —4,294,967,295 (232-1)
1| 1 111 |11 =

|
N

=2"—1
2n-1 2n—2 23 22 21 20 i

Il
(=

23

Saint Louis University

Data Representation in Memory

|
|
|
m Representing Integers

= Signed integers

24

Saint Louis University

Signed Integers — Binary

m Signed Binary Integers converts half of range as negative

m Signed representation identical, except for most significant bit
" For signed binary, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative
= Must know number of bits for signed representation

Unsigned Integer representation:

7 6 5 4 3 2 1 0
Place value of / @ 2> 2 .2 22 22 22 2
most significant bit Signed Integer representation:

is negative \
for signed binary @ 6 25 94 23 2 ol 20

25

Saint Louis University

Signed Integers — Binary

m Decimal value of n-bit signed binary number:

n-—2

valuey = —a,_, * 2" 1 + z a; * 2°
i=0

m Positive (in-range) numbers have same representation:

Unsigned Integer representation:

ol 1| 1| 0| 1| 01| 0] 1| =105
27 26 25 24 23 22 b 0

Signed Integer representation:

ol 1| 10| 1|0 /|0]1]| =105
27 260 22 24 23 22 1 20

26

Saint Louis University

Signed Integers — Binary

m Only when most significant bit set does value change

m Difference between unsigned and signed integer values is 2V

Unsigned Integer representation:

= 105 + 128,,
e1| 1 | 1] 0|1]0]0]1] [=z33,
27 26 22 24 23 22 21 20

Signed Integer representation:
g1 1| 1|0 | 1| 0| 0] 1 =105 — 1284
= —234

27

Quick Check:

For an 8-bit representation:
m What bit pattern has the minimum value?

m What bit pattern has the maximum value?
m What bit pattern represents 0?

m What bit pattern represents -1?

28

Saint Louis University

Signed Integers — Ranges

m Range of Signed binary numbers:
= Given representation with n bits, min value is always sequence
= 100....0000 = — 2"
= Given representation with n bits, max value is always sequence
= 011....1111= 2"1-1
" So, ranges are:

C data type m Unsigned range Signed range

char 0 — 255 -128 —> 127
short 16 0 — 65,535 -32,768 — 32,767
int 32 0 >4294967,295 -2,147483,648 — 2,147,483,647

29

Saint Louis University

Signed Integers — Convert to/from Decimal

m Convert Signed Binary Integer to Decimal
= Easy —just use place value notation
= two examples given on last two slides

m Convert Decimal to Signed Binary Integer

= MUST know number of bits in signed representation

= Algorithm:
a) Convert magnitude (abs val) of decimal number to unsigned binary
b) Decimal number originally negative?
— If positive, conversion is done
— If negative, perform negation on answer from part a)
» zero extend answer from a) to N bits (size of signed repr)
» negate: flip bits and add 1

30

Saint Louis University

Signed Integers — Convert Decimal to Base-R

m Example: —3710= " 8-bit signed

= A [=3740l =7

least significant bit

NUM R Q REM /

37 /2 - 18 r 1

18/2 - 9 r 0 = 100101,

9/2 > 4 r 1 /

4 / 2 - 2 1r 0 ¢ siamificant bit
most signijicant oi

2/2 5110

1/2—>0r1/

31

Saint Louis University

Signed Integers — Convert Decimal to Base-R

m Example: —3710= " 8-bit signed

= B) -37,,was negative, so perform negation
= zero extend 100101 to 8 bits

100101, —» 00100101,

« negation =11011011,
— flip bits: 00100101,
y
11011010, Can validate answer using
place value notation
— add 1: + 12

11011011,

32

Quick check:

For an 8-bit representation:
m Convert 67, into a signed integer

33

Saint Louis University

Signed Integers — Convert Decimal to Base-R

m Example: 6719 =7g_pis signed

= A) 674l =7

least significant bit

NUM R Q REM
67 / 2 - 33 - \

r 1
33/2 - 16 1 1 = 100001\12
16 /2 - 8 r 0
8/ 2 - 4 r 0 /
4 /2 ->.2 r 0 most significant bit
2/ 2 -1 r O/
1/2 -0 r 1

34

Saint Louis University

Signed Integers — Convert Decimal to Base-R

m Example: 6719 =7g_pis signed

= B) 67,,was positive, so done

= 1000011,

Can validate answer using
place value notation

35

Quick check:

For an 8-bit representation:
m Convert -100,, into a signed integer

36

Saint Louis University

Signed Integers — Convert Decimal to Base-R

m Example: _10010=?8—bitsigned
A [-1004] =7,
least significant bit
NUM R Q REMd/
100 / 2 - 50 r
50 /2 —25 r 0 = 1100100,
25/ 2 512 r 1
12 /2 > 6 r 0
most significant bit
6 /2 > 3 r 0
3/2 -1 r 1/
1/2 - 0 r 1

37

Saint Louis University

Signed Integers — Convert Decimal to Base-R

m Example: —10010="7 g_pis signed

= B) -100,, was negative, so perform negation
= zero extend 100101 to 8 bits

1100100, —» 01100100

= negation =10011100,
— flip bits: 01100100,
|
10011011, Can validate answer using

place value notation

— add 1: + 1,
10011100,

38

Saint Louis University

Signed Integers — Convert Decimal to Base-R

m Be careful of range!
m Example: —18310=7g_pit signed

= A) |—18310| =7 2 — 101101112

= B)-183,, was negative, so perform negation

= zero extend 10110111 to 8 bits // already done
= negation
— flip bits: 10110111, not -18310... WRONG!
y
01001000, -183,, is not in valid range
for 8-bit signed

01001001, = 734y

39

Saint Louis University

Representation of Signed Integers

m Multiple possible ways:
= Sign magnitude
" Ones’ Complement
= Two’s Complement (what has been presented)

m Two’s Complement greatly simplifies addition &
subtraction in hardware
= We'll see why when we cover operations
= Generally the only method still used

40

Saint Louis University

Representation of Signed Integers

m Why the name Two’s Complement?
= For a w-bit signed representation, we represent -x as 2% — x
= E.g.: consider the 8-bit representation of —374

28 = 256,,
219,,=11011011, (unsigned)
—37,, = 11011011, (signed)

4

Saint Louis University

Data Representation in Memory

m Representing Text

42

Saint Louis University

Representing Strings

m Stringsin C char S[o] = "18243";
= Represented by array of characters
= Each character encoded in ASCIl format Intel / Linux
= Standard 7-bit encoding of character set 0x31 1’
= Character “0” has code 0x30 038 ‘g’
= String should be null-terminated 0x32 Y
= Final character =0 0x34 "
= ASCII characters organized such that: -
= Numeric characters sequentially increase from 0x30 Ox33 3
— Digit i has code 0x30+i 0x00 tr:::‘

= Alphabetic characters sequentially increase in order
— Uppercase chars ‘A’ to ‘Z" are 0x41 to Ox5A
— Lowercase chars ‘A’ to ‘Z’ are 0x61 to Ox7A
= Control characters, like <RET>, <TAB>, <BKSPC>, are 0x00 to Ox1A

43

Saint Louis University

Representlng Strlngs UTF-16 on Intel

m Limitations of ASCII 0x31 ‘q’
= 7-bit encoding limits set of characters to 27 = 128 0x00
= 8-bit extended ASCII exists, but still only 28 = 256 chars 0x38 g7
= Unable to represent most other languages in ASCII 0x00
m Answer: Unicode 0x32 97
= first 128 characters are ASCI| 0x00
= j.e. 2-byte Unicode for ‘4’: 0x34 -> 0x0034 0x34 "
= j.e. 4-byte Unicode for ‘T’: 0x54 -> 0x00000054 0x00
= UTF-8: 1-byte version // commonly used 0x33 g
= UTF-16: 2-byte version // commonly used 0x00
= allows 21 = 65,536 unique chars 0x00 null
= UTF-32: 4-byte version oxoo | term

= allows 232 = ~4 billion unique characters
" Unicode used in many more recent languages, like Java and Python

44

Saint Louis University

String Representation Links

m ASCII

" http://www.ascii-code.com/

m Unicode
" http://unicode-table.com/en/

45

http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/
http://unicode-table.com/en/
http://unicode-table.com/en/
http://unicode-table.com/en/
http://unicode-table.com/en/

Quick Check:

m Convert the following strings to ASCII-

char school[4] = “SLU”;

char name|[6] = “Frank”;

46

Saint Louis University

Data Representation in Memory

m Representing Pointers

47

Saint Louis University

What is a Pointer?

Recall:

m Memory is a contiguous array of individual bytes
= Consider a machine with 16-bit addresses

0x0000
0x0001
0x0002
0x0003
0x0004

48

Saint Louis University

What is a Pointer?

Recall:

m Memory is a contiguous array of individual bytes
= Consider a machine with 16-bit addresses and 32-bit data

26 0x0000

3C 0x0001

00 0x0002

00 0x0003

unsigned X = 15398; //0x00003C26 0x0004

49

Saint Louis University

Pointer Representation

m Points to a location in memory

Suppose: 26 0xA244
00 O0xA246

unsigned X = 15398; //0x00003C26

00 [0xA247
unsigned *ptr = &X; //0xA244
m A pointer is a variable that holds the 0x44 | 0xB710
address of another variable oxA2 | oxB711
m Different compilers and machines assign 0xB712
different locations to objects 0xB713

50

Saint Louis University

Endianness

m Recall that memory is byte-addressable
= Four bytes in a 32-bit integer, which order are they stored with?

Two ways to store: unsigned X = 15398; //0x00003C26

m Little Endian m Big Endian
= |east significant bits stored = Most significant bits stored
first in memory first in memory
26 0x0000 00 0x0000
3C 0x0001 00 0x0001
00 0x0002 26 0x0002
00 0x0003 3C 0x0003
0x0004 0x0004

51

Quick Check

m Consider the string:
char S[6] = “HELLO”;

0x48 ‘H" OxACED

m Whatis S[0] ? 0x45 ‘e’ OXACEE
m What is &S[0] ? 0x4C ‘' OxACEF
m What is S[3]? 0x4C ‘' OxACFO
s What is &S[3]? Ox4F | ‘O’ OxACF1

0x00 null OxACF2
term

52

