
Carnegie Mellon

1

Saint Louis University

Data Representation in Memory

CSCI 2400 / ECE 3217: Computer Architecture

Instructor:

David Ferry

Slides adapted from Bryant & O’Hallaron’s slides
via Jason Fritts

Carnegie Mellon

2

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

3

Saint Louis University

Byte-Oriented Memory Organization

 Modern processors: Byte-Addressable Memory
 Conceptually a very large array of bytes

 Each byte has a unique address

 Processor address space determines address range:

 32-bit address space has 232 unique addresses: 4GB max

– 0x00000000 to 0xffffffff (in decimal: 0 to 4,294,967,295)

 64-bit address space has 264 unique addresses: ~ 1.8x1019 bytes max

– 0x0000000000000000 to 0xffffffffffffffff

– Enough to give everyone on Earth about 2 Gb

 Address space size is not the same as processor size!

 E.g.: The original Nintendo was an 8-bit processor with a 16-bit
address space

• • •

Carnegie Mellon

4

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

5

Saint Louis University

Why Use Bits & Binary?

0.0V

0.5V

2.8V

3.3V

0 1 0

 Digital transistors operate in high and low voltage ranges

 Voltage Range dictates Binary Value on wire
 high voltage range (e.g. 2.8V to 3.3V) is a logic 1

 low voltage range (e.g. 0.0V to 0.5V) is a logic 0

 voltages in between are indefinite values

 Ternary or quaternary systems have practicality problems

Carnegie Mellon

6

Saint Louis University

Bits & Bytes

 Computers use bits:
 a “bit” is a base-2 digit

 {L, H} => {0, 1}

 Single bit offers limited range, so grouped in bytes
 1 byte = 8 bits

 a single datum may use multiple bytes

 Data representation 101:
 Given N bits, can represent 2N unique values

 Letters of the alphabet?

 Colors?

Carnegie Mellon

7

Saint Louis University

Encoding Byte Values

 Processors generally use multiples of Bytes
 common sizes: 1, 2, 4, 8, or 16 bytes

 Intel data names:

 Byte 1 byte (8 bits) 28 = 256

 Word 2 bytes (16 bits) 216 = 65,536

 Double word 4 bytes (32 bits) 232 = 4,294,967,295

 Quad word 8 bytes (64 bits)
 264 = 18,446,744,073,709,551,616

Unfortunately, these names are not standard
so we’ll often use C data names instead

(but these vary in size too… /sigh)

Carnegie Mellon

8

Saint Louis University

C Data Types

C Data Type Typical 32-bit Intel IA32 x86-64

 char 1 byte 1 1

 short 2 2 2

 int 4 4 4

 long 4 4 8

 long long 8 8 8

 float 4 4 4

 double 8 8 8

 long double 8 10/12 10/16

 pointer (addr) 4 4 8

32-bit 64-bit

key
differences

Carnegie Mellon

9

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

10

Saint Louis University

Encoding Byte Values

 1 Byte = 8 bits
 Binary: 000000002 to 111111112

 A byte value can be interpreted in many ways!
 depends upon how it’s used

 For example, consider byte with: 010101012
 as ASCII text: ‘U’

 as integer: 8510

 as IA32 instruction: pushl %ebp

 the 86th byte of memory in a computer

 a medium gray pixel in a gray-scale image

 could be interpreted MANY other ways…

Carnegie Mellon

11

Saint Louis University

Binary is Hard to Represent!

 Problem with binary – Cumbersome to use
 e.g. approx. how big is: 10100111010100010111010112 ?

 Would be nice if the representation was closer to decimal: 21,930,731

 Let’s define a larger base so that

 for equivalence, R and x must be integers – then 1 digit in R equals x bits

 equivalence allows direct conversion between representations

 two options closest to decimal:

 octal: (base eight)

 hexadecimal: (base sixteen)

𝑹𝟏 = 𝟐𝒙

𝟖𝟏 = 𝟐𝟑

𝟏𝟔𝟏 = 𝟐𝟒

Carnegie Mellon

12

Saint Louis University

Representing Binary Efficiently

 Octal or Hexadecimal?
 binary : 10100111010100010111010112

 octal: 1235213538

 hexadecimal number: 14EA2EB16

 decimal: 21930731

 Octal and Hex are closer in size to decimal, BUT…

 How many base-R digits per byte?
 Octal: 8/3 = 2.67 octal digits per byte -- BAD

 Hex: 8/4 = 2 hex digits per byte -- GOOD

Hexadecimal wins: 1 hex digit 4 bits

Carnegie Mellon

13

Saint Louis University

Expressing Byte Values

 Common ways of expressing a byte
 Binary: 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal: 0016 to FF16

 Base-16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 in C/C++ programming languages, D316 written as either

– 0xD3

– 0xd3

Juliet:

"What's in a name? That which we call a rose
By any other name would smell as sweet."

Carnegie Mellon

14

Saint Louis University

 Decimal vs
Binary vs
Hexadecimal

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

18 10010 12

Carnegie Mellon

15

Saint Louis University

Convert Between Binary and Hex

 Convert Hexadecimal to Binary
 Simply replace each hex digit with its equivalent 4-bit binary sequence

 Example: 6 D 1 9 F 3 C16

 Convert Binary to Hexadecimal
 Starting from the radix point, replace each sequence of 4 bits with the

equivalent hexadecimal digit

 Example: 1011001000110101110101100010100112

0110 1101 0001 1001 1111 0011 11002

1 6 4 6 B A C 5 316

Carnegie Mellon

16

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

17

Saint Louis University

Unsigned Integers – Binary

 Computers store Unsigned Integer numbers in Binary (base-2)
 Binary numbers use place valuation notation, just like decimal

 Decimal value of n-bit unsigned binary number:

0 1 1 1 0 1 0 1

27 26 25 24 23 22 21 20

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝒂𝒊 ∗ 𝟐
𝒊

𝒏−𝟏

𝒊=𝟎

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝟎 ∗ 𝟐
𝟕 + 𝟏 ∗ 𝟐𝟔 + 𝟏 ∗ 𝟐𝟓 + 𝟏 ∗ 𝟐𝟒 + 𝟎 ∗ 𝟐𝟑 + 𝟏 ∗ 𝟐𝟐 + 𝟎 ∗ 𝟐𝟏 + 𝟏 ∗ 𝟐𝟎

= 𝟐𝟔 + 𝟐𝟓 + 𝟐𝟒 + 𝟐𝟐 + 𝟐𝟎

= 𝟔𝟒 + 𝟑𝟐 + 𝟏𝟔 + 𝟒 + 𝟏 = 𝟏𝟏𝟕𝟏𝟎

Carnegie Mellon

18

Saint Louis University

Unsigned Integers – Base-R

 Convert Base-R to Decimal
 Place value notation can similarly determine decimal value of any base, R

 Decimal value of n-digit base r number:

 Example:

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝒂𝒊 ∗ 𝒓
𝒊

𝒏−𝟏

𝒊=𝟎

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝟑 ∗ 𝟖
𝟐 + 𝟏 ∗ 𝟖𝟏 + 𝟕 ∗ 𝟖𝟎

= 𝟑 ∗ 𝟔𝟒 + 𝟏 ∗ 𝟖 + 𝟕 ∗ 𝟏

= 𝟏𝟗𝟐 + 𝟖 + 𝟕 = 𝟐𝟎𝟕𝟏𝟎

𝟑𝟏𝟕𝟖 = ? 𝟏𝟎

Carnegie Mellon

19

Saint Louis University

Unsigned Integers – Hexadecimal

 Commonly used for converting hexadecimal numbers
 Hexadecimal number is an “equivalent” representation to binary, so

often need to determine decimal value of a hex number

 Decimal value for n-digit hexadecimal (base 16) number:

 Example:

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝒂𝒊 ∗ 𝟏𝟔
𝒊

𝒏−𝟏

𝒊=𝟎

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = 𝟗 ∗ 𝟏𝟔
𝟐 + 𝟏𝟒 ∗ 𝟏𝟔𝟏 + 𝟒 ∗ 𝟏𝟔𝟎

= 𝟗 ∗ 𝟐𝟓𝟔 + 𝟏𝟒 ∗ 𝟏𝟔 + 𝟒 ∗ 𝟏

= 𝟐𝟑𝟎𝟒 + 𝟐𝟐𝟒 + 𝟒 = 𝟐𝟓𝟑𝟐𝟏𝟎

𝟗𝐄𝟒𝟏𝟔 = ? 𝟏𝟎

Carnegie Mellon

20

Saint Louis University

Unsigned Integers – Convert Decimal to Base-R

 Also need to convert decimal numbers to desired base

 Algorithm for converting unsigned Decimal to Base-R
a) Assign decimal number to NUM

b) Divide NUM by R

 Save remainder REM as next least significant digit

 Assign quotient Q as new NUM

c) Repeat step b) until quotient Q is zero

 Example: 𝟖𝟑𝟏𝟎 = ? 𝟕

NUM R REM Q

 𝟖𝟑 / 𝟕

 𝟏𝟏 𝒓 𝟔

 𝟏𝟏 / 𝟕

 𝟏 𝒓 𝟒

 𝟏 / 𝟕

 𝟎 𝒓 𝟏

= 𝟏𝟒𝟔𝟕

least significant digit

most significant digit

Carnegie Mellon

21

Saint Louis University

Unsigned Integers – Convert Decimal to Binary

 Example with Unsigned Binary: 𝟓𝟐𝟏𝟎 = ? 𝟐

NUM R REM Q

 𝟓𝟐 / 𝟐

 𝟐𝟔 𝒓 𝟎

 𝟐𝟔 / 𝟐

 𝟏𝟑 𝒓 𝟎

= 𝟏𝟏𝟎𝟏𝟎𝟎𝟐

least significant digit

most significant digit

 𝟏𝟑 / 𝟐

 𝟔 𝒓 𝟏

 𝟔 / 𝟐

 𝟑 𝒓 𝟎

 𝟑 / 𝟐

 𝟏 𝒓 𝟏

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

Carnegie Mellon

22

Saint Louis University

Unsigned Integers – Convert Decimal to Hexadecimal

 Example with Unsigned Hexadecimal: 𝟒𝟑𝟕𝟏𝟎 = ? 𝟏𝟔

NUM R REM Q

𝟒𝟑𝟕 / 𝟏𝟔

 𝟐𝟕 𝒓 𝟓

= 𝟏𝐁𝟓𝟏𝟔

least significant digit

most significant digit

 𝟐𝟕 / 𝟏𝟔

 𝟏 𝒓 𝟏𝟏

 𝟏 / 𝟏𝟔

 𝟎 𝒓 𝟏

Carnegie Mellon

23

Saint Louis University

Unsigned Integers – Ranges

 Range of Unsigned binary numbers based on number of bits
 Given representation with n bits, min value is always sequence

 0....0000 = 0

 Given representation with n bits, max value is always sequence

 1....1111 = 2n – 1

 So, ranges are:

 unsigned char:

 unsigned short:

 unsigned int:

1 1 1 1 1 1

2n-1 2n-2 23 22 21 20
= 𝟐𝒊
𝒏−𝟏

𝒊=𝟎

 = 𝟐𝒏 − 𝟏

𝟎 𝟐𝟓𝟓 𝟐𝟖 − 𝟏

𝟎 𝟔𝟓, 𝟓𝟑𝟓 𝟐𝟏𝟔 − 𝟏

𝟎 𝟒, 𝟐𝟗𝟒, 𝟗𝟔𝟕, 𝟐𝟗𝟓 𝟐𝟑𝟐 − 𝟏

Carnegie Mellon

24

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

25

Saint Louis University

Signed Integers – Binary

 Signed Binary Integers converts half of range as negative

 Signed representation identical, except for most significant bit
 For signed binary, most significant bit indicates sign

 0 for nonnegative

 1 for negative

 Must know number of bits for signed representation

-27 26 25 24 23 22 21 20

Signed Integer representation:

 27 26 25 24 23 22 21 20

Unsigned Integer representation:

Place value of
most significant bit

is negative
for signed binary

Carnegie Mellon

26

Saint Louis University

Signed Integers – Binary

 Decimal value of n-bit signed binary number:

 Positive (in-range) numbers have same representation:

𝒗𝒂𝒍𝒖𝒆𝟏𝟎 = −𝒂𝒏−𝟏 ∗ 𝟐
𝒏−𝟏 + 𝒂𝒊 ∗ 𝟐

𝒊

𝒏−𝟐

𝒊=𝟎

0 1 1 0 1 0 0 1

-27 26 25 24 23 22 21 20

Signed Integer representation:

0 1 1 0 1 0 0 1

 27 26 25 24 23 22 21 20

Unsigned Integer representation:

= 𝟏𝟎𝟓𝟏𝟎

= 𝟏𝟎𝟓𝟏𝟎

Carnegie Mellon

27

Saint Louis University

Signed Integers – Binary

 Only when most significant bit set does value change

 Difference between unsigned and signed integer values is 2N

0 1 1 1 0 1 0 0 1

-27 26 25 24 23 22 21 20

Signed Integer representation:

0 1 1 1 0 1 0 0 1

 27 26 25 24 23 22 21 20

Unsigned Integer representation:

= 𝟏𝟎𝟓 + 𝟏𝟐𝟖𝟏𝟎
= 𝟐𝟑𝟑𝟏𝟎

= 𝟏𝟎𝟓 − 𝟏𝟐𝟖𝟏𝟎
= −𝟐𝟑𝟏𝟎

Carnegie Mellon

28

Saint Louis University

Quick Check:

For an 8-bit representation:

 What bit pattern has the minimum value?

 What bit pattern has the maximum value?

 What bit pattern represents 0?

 What bit pattern represents -1?

Carnegie Mellon

29

Saint Louis University

Signed Integers – Ranges

 Range of Signed binary numbers:
 Given representation with n bits, min value is always sequence

 100....0000 = – 2n-1

 Given representation with n bits, max value is always sequence

 011....1111 = 2n-1 – 1

 So, ranges are:

 C data type # bits Unsigned range Signed range

char 8 0 255 -128 127

short 16 0 65,535 -32,768 32,767

int 32 0 4,294,967,295 -2,147,483,648 2,147,483,647

Carnegie Mellon

30

Saint Louis University

Signed Integers – Convert to/from Decimal

 Convert Signed Binary Integer to Decimal
 Easy – just use place value notation

 two examples given on last two slides

 Convert Decimal to Signed Binary Integer
 MUST know number of bits in signed representation

 Algorithm:

a) Convert magnitude (abs val) of decimal number to unsigned binary

b) Decimal number originally negative?

– If positive, conversion is done

– If negative, perform negation on answer from part a)

» zero extend answer from a) to N bits (size of signed repr)

» negate: flip bits and add 1

Carnegie Mellon

31

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 A)

−𝟑𝟕𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

NUM R REM Q

 𝟑𝟕 / 𝟐

 𝟏𝟖 𝒓 𝟏

 𝟏𝟖 / 𝟐

 𝟗 𝒓 𝟎

 𝟗 / 𝟐

 𝟒 𝒓 𝟏

= 𝟏𝟎𝟎𝟏𝟎𝟏𝟐

least significant bit

most significant bit

−𝟑𝟕𝟏𝟎 = ? 𝟐

 𝟒 / 𝟐

 𝟐 𝒓 𝟎

 𝟐 / 𝟐

 𝟏 𝒓 𝟎

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

Carnegie Mellon

32

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 B) -3710 was negative, so perform negation

 zero extend 100101 to 8 bits

 negation

– flip bits:

– add 1:

−𝟑𝟕𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐
𝟎𝟎𝟏𝟎𝟎𝟏𝟎𝟏𝟐

𝟏𝟎𝟎𝟏𝟎𝟏𝟐 𝟎𝟎𝟏𝟎𝟎𝟏𝟎𝟏𝟐

𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟎𝟐

+ 𝟏𝟐

𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐

Can validate answer using
place value notation

Carnegie Mellon

33

Saint Louis University

Quick check:

For an 8-bit representation:

 Convert 6710 into a signed integer

Carnegie Mellon

34

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 A)

𝟔𝟕𝟏𝟎 = ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

NUM R REM Q

 𝟑𝟑 / 𝟐

 𝟏𝟔 𝒓 𝟏

 𝟏𝟔 / 𝟐

 𝟖 𝒓 𝟎

 𝟖 / 𝟐

 𝟒 𝒓 𝟎

= 𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟐

least significant bit

most significant bit

𝟔𝟕𝟏𝟎 = ? 𝟐

 𝟒 / 𝟐

 𝟐 𝒓 𝟎

 𝟐 / 𝟐

 𝟏 𝒓 𝟎

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

 𝟔𝟕 / 𝟐

 𝟑𝟑 𝒓 𝟏

Carnegie Mellon

35

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 B) 6710 was positive, so done

𝟔𝟕𝟏𝟎 = ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟐

Can validate answer using
place value notation

Carnegie Mellon

36

Saint Louis University

Quick check:

For an 8-bit representation:

 Convert -10010 into a signed integer

Carnegie Mellon

37

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 A)

−𝟏𝟎𝟎𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

NUM R REM Q

 𝟏𝟎𝟎 / 𝟐

 𝟓𝟎 𝒓 𝟎

 𝟓𝟎 / 𝟐

 𝟐𝟓 𝒓 𝟎

 𝟐𝟓 / 𝟐

 𝟏𝟐 𝒓 𝟏

= 𝟏𝟏𝟎𝟎𝟏𝟎𝟎𝟐

least significant bit

most significant bit

−𝟏𝟎𝟎𝟏𝟎 = ? 𝟐

 𝟏𝟐 / 𝟐

 𝟔 𝒓 𝟎

 𝟔 / 𝟐

 𝟑 𝒓 𝟎

 𝟑 / 𝟐

 𝟏 𝒓 𝟏

 𝟏 / 𝟐

 𝟎 𝒓 𝟏

Carnegie Mellon

38

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Example:

 B) -10010 was negative, so perform negation

 zero extend 100101 to 8 bits

 negation

– flip bits:

– add 1:

−𝟏𝟎𝟎𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟎𝟎𝟏𝟏𝟏𝟎𝟎𝟐
𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟎𝟐

𝟏𝟏𝟎𝟎𝟏𝟎𝟎𝟐 𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟎

𝟏𝟎𝟎𝟏𝟏𝟎𝟏𝟏𝟐

+ 𝟏𝟐

𝟏𝟎𝟎𝟏𝟏𝟏𝟎𝟎𝟐

Can validate answer using
place value notation

Carnegie Mellon

39

Saint Louis University

Signed Integers – Convert Decimal to Base-R

 Be careful of range!

 Example:

 A)

 B) -18310 was negative, so perform negation

 zero extend 10110111 to 8 bits // already done

 negation

– flip bits:

– add 1:

−𝟏𝟖𝟑𝟏𝟎= ? 𝟖−𝒃𝒊𝒕 𝒔𝒊𝒈𝒏𝒆𝒅

= 𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟏𝟐 −𝟏𝟖𝟑𝟏𝟎 = ? 𝟐

𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟏𝟐

𝟎𝟏𝟎𝟎𝟏𝟎𝟎𝟎𝟐

+ 𝟏𝟐

𝟎𝟏𝟎𝟎𝟏𝟎𝟎𝟏𝟐 = 𝟕𝟑𝟏𝟎

not -18310… WRONG!

-18310 is not in valid range
for 8-bit signed

Carnegie Mellon

40

Saint Louis University

Representation of Signed Integers

 Multiple possible ways:
 Sign magnitude

 Ones’ Complement

 Two’s Complement (what has been presented)

 Two’s Complement greatly simplifies addition &
subtraction in hardware
 We’ll see why when we cover operations

 Generally the only method still used

Carnegie Mellon

41

Saint Louis University

Representation of Signed Integers

 Why the name Two’s Complement?
 For a w-bit signed representation, we represent -x as 2w – x

 E.g.: consider the 8-bit representation of −𝟑𝟕𝟏𝟎

𝟐𝟏𝟗𝟏𝟎 = 𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐 (unsigned)

−𝟑𝟕𝟏𝟎 = 𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟐 (signed)

𝟐𝟖 = 𝟐𝟓𝟔𝟏𝟎

𝟐𝟖− 𝟑𝟕𝟏𝟎 = 𝟐𝟏𝟗𝟏𝟎

Carnegie Mellon

42

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

43

Saint Louis University

char S[6] = "18243";

Representing Strings

 Strings in C
 Represented by array of characters

 Each character encoded in ASCII format

 Standard 7-bit encoding of character set

 Character “0” has code 0x30

 String should be null-terminated

 Final character = 0

 ASCII characters organized such that:

 Numeric characters sequentially increase from 0x30

– Digit i has code 0x30+i

 Alphabetic characters sequentially increase in order

– Uppercase chars ‘A’ to ‘Z’ are 0x41 to 0x5A

– Lowercase chars ‘A’ to ‘Z’ are 0x61 to 0x7A

 Control characters, like <RET>, <TAB>, <BKSPC>, are 0x00 to 0x1A

Intel / Linux

0x31

0x38

0x32

0x34

0x33

0x00

‘1’

‘8’

‘2’

‘4’

‘3’

null
term

Carnegie Mellon

44

Saint Louis University

Representing Strings

 Limitations of ASCII
 7-bit encoding limits set of characters to 27 = 128

 8-bit extended ASCII exists, but still only 28 = 256 chars

 Unable to represent most other languages in ASCII

 Answer: Unicode
 first 128 characters are ASCII

 i.e. 2-byte Unicode for ‘4’: 0x34 -> 0x0034

 i.e. 4-byte Unicode for ‘T’: 0x54 -> 0x00000054

 UTF-8: 1-byte version // commonly used

 UTF-16: 2-byte version // commonly used

 allows 216 = 65,536 unique chars

 UTF-32: 4-byte version

 allows 232 = ~4 billion unique characters

 Unicode used in many more recent languages, like Java and Python

UTF-16 on Intel

0x31

0x00

0x38

0x00

0x32

0x00

0x34

0x00

0x33

0x00

0x00

0x00

‘1’

‘8’

‘2’

‘4’

‘3’

null
term

Carnegie Mellon

45

Saint Louis University

String Representation Links

 ASCII
 http://www.ascii-code.com/

 Unicode
 http://unicode-table.com/en/

http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/
http://unicode-table.com/en/
http://unicode-table.com/en/
http://unicode-table.com/en/
http://unicode-table.com/en/

Carnegie Mellon

46

Saint Louis University

Quick Check:

 Convert the following strings to ASCII-

char school[4] = “SLU”;

char name[6] = “Frank”;

Carnegie Mellon

47

Saint Louis University

Data Representation in Memory

 Basic memory organization

 Bits & Bytes – basic units of Storage in computers

 Representing information in binary and hexadecimal

 Representing Integers
 Unsigned integers

 Signed integers

 Representing Text

 Representing Pointers

Carnegie Mellon

48

Saint Louis University

What is a Pointer?

Recall:

 Memory is a contiguous array of individual bytes
 Consider a machine with 16-bit addresses

0x0000

0x0001

0x0002

0x0003

0x0004

Carnegie Mellon

49

Saint Louis University

What is a Pointer?

Recall:

 Memory is a contiguous array of individual bytes
 Consider a machine with 16-bit addresses and 32-bit data

unsigned X = 15398; //0x00003C26

26

3C

00

00

0x0000

0x0001

0x0002

0x0003

0x0004

Carnegie Mellon

50

Saint Louis University

Pointer Representation

 Points to a location in memory

Suppose:

unsigned X = 15398; //0x00003C26

unsigned *ptr = &X; //0xA244

 A pointer is a variable that holds the
address of another variable

 Different compilers and machines assign
different locations to objects

26

3C

00

00

0x44

0xA2

0xA244

0xA245

0xA246

0xA247

0xB710

0xB711

0xB712

0xB713

Carnegie Mellon

51

Saint Louis University

Endianness

 Recall that memory is byte-addressable
 Four bytes in a 32-bit integer, which order are they stored with?

Two ways to store: unsigned X = 15398; //0x00003C26

26

3C

00

00

0x0000

0x0001

0x0002

0x0003

0x0004

00

00

26

3C

0x0000

0x0001

0x0002

0x0003

0x0004

 Little Endian
 Least significant bits stored

first in memory

 Big Endian
 Most significant bits stored

first in memory

Carnegie Mellon

52

Saint Louis University

Quick Check

 Consider the string:
char S[6] = “HELLO”;

 What is S[0] ?

 What is &S[0] ?

 What is S[3]?

 What is &S[3]?

0x48

0x45

0x4C

0x4C

0x4F

0x00

‘H’

‘E’

‘L’

‘L’

‘O’

null
term

0xACED

0xACEE

0xACEF

0xACF0

0xACF1

0xACF2

