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Data Representation in Memory

m Basic memory organization
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Byte-Oriented Memory Organization
o s

¢
*

m Modern processors: Byte-Addressable Memory
= Conceptually a very large array of bytes
= Each byte has a unique address
" Processor address space determines address range:
= 32-bit address space has 232 unique addresses: 4GB max
— 0x00000000 to Oxffffffff (in decimal: O to 4,294,967,295)
= 64-bit address space has 254 unique addresses: ~ 1.8x10*° bytes max
— 0x0000000000000000 to Oxfffffffffffffff
— Enough to give everyone on Earth about 2 Gb
= Address space size is not the same as processor size!

= E.g.: The original Nintendo was an 8-bit processor with a 16-bit
address space
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Data Representation in Memory

Bits & Bytes — basic units of Storage in computers
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Why Use Bits & Binary?

— 0 b = 1 s =0 —
3.3V —
/‘/\f\/\
2.8V — / \
0.5V —
/—V\J \’\f
0.0V —

m Digital transistors operate in high and low voltage ranges

m Voltage Range dictates Binary Value on wire
= high voltage range (e.g. 2.8V to 3.3V) is a logic 1
= Jow voltage range (e.g. 0.0V to 0.5V) is a logic 0
= voltages in between are indefinite values

m Ternary or quaternary systems have practicality problems
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Bits & Bytes

m Computers use bits:
= a2 “bit” is a base-2 digit
" {L,H}=>{0, 1}

m Single bit offers limited range, so grouped in bytes
= 1 byte = 8 bits
= asingle datum may use multiple bytes

m Data representation 101:

= Given N bits, can represent 2V unique values
= Letters of the alphabet?
= Colors?



Encoding Byte Values

m Processors generally use multiples of Bytes
= commonsizes: 1, 2,4, 8, or 16 bytes
" |ntel data names:

= Byte 1 byte (8 bits) 28 =256

= Word 2 bytes (16 bits) 26 =65,536

= Double word 4 bytes (32 bits) 232=4,294,967,295
= Quad word 8 bytes (64 bits)

254 =18,446,744,073,709,551,616

Unfortunately, these names are not standard
so we’ll often use C data names instead
(but these vary in size too... /sigh)
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C Data Types
32-bit 64-bit
Cov e |
char 1 byte
short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8 \
float 4 4 4 key
differences
double 8 8 8
long double 8 10/12 10/16
pointer (addr) 4 4 8
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Data Representation in Memory

Representing information in binary and hexadecimal
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Encoding Byte Values

m 1 Byte =8 bits
= Binary: 00000000,t0 11111111,

m A byte value can be interpreted in many ways!

= depends upon how it’s used

m For example, consider byte with: 01010101,

= as ASCII text: ‘U’
= asinteger: 8519
= asIA32 instruction: pushl %ebp

= the 86 byte of memory in a computer
" a medium gray pixel in a gray-scale image .
= could be interpreted MANY other ways...
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Binary is Hard to Represent!

m Problem with binary — Cumbersome to use
= e.g. approx. how bigis: 1010011101010001011101011, ?
" Would be nice if the representation was closer to decimal: 21,930,731

m Let’s define a larger base so that
Rl — 2X
= for equivalence, R and x must be integers — then 1 digit in R equals x bits
= equivalence allows direct conversion between representations
= two options closest to decimal:
= octal: 8l =23 (base eight)
= hexadecimal: 161 = 24 (base sixteen)

1
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Representing Binary Efficiently

m Octal or Hexadecimal?

= binary : 1010011101010001011101011,
" octal: 123521353,
" hexadecimal number: 14EA2EB
= decimal: 21930731

m Octal and Hex are closer in size to decimal, BUT...

m How many base-R digits per byte?
" Qctal: 8/3 =2.67 octal digits per byte -- BAD
" Hex: 8/4 =2 hexdigits per byte -- GOOD

Hexadecimal wins: 1 hex digit < 4 bits
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Expressing Byte Values

Juliet:
"What's in a name? That which we call a rose
By any other name would smell as sweet."

m Common ways of expressing a byte
= Binary: 00000000,to 11111111,

= Decimal: 0,9to 255,

= Hexadecimal: 00;¢to FFy
= Base-16 number representation
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F
= in C/C++ programming languages, D3¢ written as either
— OxD3
— Oxd3
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Decimal vs 0 0000 0
. 1 0001 1
Binary vs . 0010 )
Hexadecimal 3 oo1L 3
4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

=
(00]

10010

=
N
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Convert Between Binary and Hex

m Convert Hexadecimal to Binary

= Simply replace each hex digit with its equivalent 4-bit binary sequence
= Example: 6D19F3C

0110 1101 0001 1001 1111 0011 1100,

m Convert Binary to Hexadecimal
= Starting from the radix point, replace each sequence of 4 bits with the
equivalent hexadecimal digit
= Example: F)l1({0100FllO*Oll‘lOlO’llOO})lO]‘OOll

vl

316
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Data Representation in Memory

o

o

o

m Representing Integers
= Unsigned integers

16
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Unsigned Integers — Binary

m Computers store Unsigned Integer numbers in Binary (base-2)
= Binary numbers use place valuation notation, just like decimal
= Decimal value of n-bit unsigned binary number:

n—-1

valueqy = z a;  2°
i=0

o111 |0/|1)|0]|1
27 3 22 21 20

| \ \\\\\\>

value;g =027 +1+20 + 125+ 124 +0+23 +1+22+0+21 +1 %20
=264+2>4+2%4+22429
=64+32+16+4+1|=1174,
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Unsigned Integers — Base-R

m Convert Base-R to Decimal

= Place value notation can similarly determine decimal value of any base, R
= Decimal value of n-digit base r number:

n—-1

valuey = z a; *
i=0

= Example: 317g =7 10
value;y =3 8% +1x81+7x8°

=3+x64+1x8+7x1
=192+8+7 |=2074
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Unsigned Integers — Hexadecimal

m Commonly used for converting hexadecimal numbers

= Hexadecimal number is an “equivalent” representation to binary, so
often need to determine decimal value of a hex number

= Decimal value for n-digit hexadecimal (base 16) number:
n—-1

value,y = z a; * 16
i=0

= Example: 9E44¢ =7 10

valuey = 9+ 16% + 14 + 16! + 4 =« 16°
=9%x256+14+16+4*1
= 2304 + 224 + 4 |= 25324,
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Unsigned Integers — Convert Decimal to Base-R

m Also need to convert decimal numbers to desired base

m Algorithm for converting unsigned Decimal to Base-R
a) Assign decimal number to NUM
b) Divide NUM by R
= Save remainder REM as next least significant digit
=  Assign quotient Q as new NUM
c) Repeat step b) until quotient Q is zero

m Example: 8319=75
least significant digit

NUM R REM / \

83/7—>11 r 6
11 /7 - 1 r 4 67
1/ 7 - 0 r 1« /

most significant digit
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Unsigned Integers — Convert Decimal to Binary

m Example with Unsigned Binary: 5210=7>

least significant digit

NUM R Q REM \
0 /

52 /2 - 26 r N
26 /2 513 r 0 = 110100,
13 /2 - 6 r 1 /

6 / 2 - 3 r 0 most significant digit

3 /2 -1 r 1

1 /2 - 0 r 1
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Unsigned Integers — Convert Decimal to Hexadecimal
m Example with Unsigned Hexadecimal: 43710 =7 16

least significant digit

NUM R Q REM / \

437 /16 - 27 r 5 N
=1B516
27 /16 - 1 r 11 4

1/16—>Or1\ /

most significant digit
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Unsigned Integers — Ranges

m Range of Unsigned binary numbers based on number of bits

= Given representation with n bits, min value is always sequence
= 0...0000= 0

= Given representation with n bits, max value is always sequence
= 1....1111= 2"-1

" So, ranges are:

= unsigned char: 0 - 255 (28-1)

= unsigned short: 0 - 65535 (216-1)

" unsigned int: 0 —4,294,967,295  (232-1)
1| 1 111 |11 =

|
N

=2"—1
2n-1 2n—2 23 22 21 20 i

Il
(=
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Data Representation in Memory

|
|
|
m Representing Integers

= Signed integers
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Signed Integers — Binary

m Signed Binary Integers converts half of range as negative

m Signed representation identical, except for most significant bit
" For signed binary, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative
= Must know number of bits for signed representation

Unsigned Integer representation:

7 6 5 4 3 2 1 0
Place value of / @ 2> 2 .2 22 22 22 2
most significant bit Signed Integer representation:

is negative \
for signed binary @ 6 25 94 23 2 ol 20
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Signed Integers — Binary

m Decimal value of n-bit signed binary number:

n-—2

valuey = —a,_, * 2" 1 + z a; * 2°
i=0

m Positive (in-range) numbers have same representation:

Unsigned Integer representation:

ol 1| 1| 0| 1| 01| 0] 1| =105
27 26 25 24 23 22 b 0

Signed Integer representation:

ol 1| 10| 1|0 /|0]1]| =105
27 260 22 24 23 22 1 20
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Signed Integers — Binary

m Only when most significant bit set does value change

m Difference between unsigned and signed integer values is 2V

Unsigned Integer representation:

= 105 + 128,,
e1| 1 | 1] 0|1 ]0]0]1] [=z33,
27 26 22 24 23 22 21 20

Signed Integer representation:
g1 1| 1|0 | 1| 0| 0] 1 =105 — 1284
= —234
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Quick Check:

For an 8-bit representation:
m What bit pattern has the minimum value?

m What bit pattern has the maximum value?
m What bit pattern represents 0?

m What bit pattern represents -1?

28
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Signed Integers — Ranges

m Range of Signed binary numbers:
= Given representation with n bits, min value is always sequence
= 100....0000 = — 2"
= Given representation with n bits, max value is always sequence
= 011....1111= 2"1-1
" So, ranges are:

C data type m Unsigned range Signed range

char 0 — 255 -128 —> 127
short 16 0 — 65,535 -32,768 — 32,767
int 32 0 >4294967,295  -2,147483,648 — 2,147,483,647
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Signed Integers — Convert to/from Decimal

m Convert Signed Binary Integer to Decimal
= Easy —just use place value notation
= two examples given on last two slides

m Convert Decimal to Signed Binary Integer

= MUST know number of bits in signed representation

= Algorithm:
a) Convert magnitude (abs val) of decimal number to unsigned binary
b) Decimal number originally negative?
— If positive, conversion is done
— If negative, perform negation on answer from part a)
» zero extend answer from a) to N bits (size of signed repr)
» negate: flip bits and add 1

30
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Signed Integers — Convert Decimal to Base-R

m Example: —3710= " 8-bit signed

= A [=3740l =7

least significant bit

NUM R Q REM /

37 /2 - 18 r 1

18/2 - 9 r 0 = 100101,

9/2 > 4 r 1 /

4 / 2 - 2 1r 0 ¢ siamificant bit
most signijicant oi

2/2 5110

1/2—>0r1/
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Signed Integers — Convert Decimal to Base-R

m Example: —3710= " 8-bit signed

= B) -37,,was negative, so perform negation
= zero extend 100101 to 8 bits

100101, —» 00100101,

« negation =11011011,
— flip bits: 00100101,
y
11011010, Can validate answer using
place value notation
— add 1: + 12

11011011,

32



Quick check:

For an 8-bit representation:
m Convert 67, into a signed integer
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Signed Integers — Convert Decimal to Base-R

m Example: 6719 =7g_pis signed

= A) 674l =7

least significant bit

NUM R Q REM
67 / 2 - 33 - \

r 1
33/2 - 16 1 1 = 100001\12
16 /2 - 8 r 0
8/ 2 - 4 r 0 /
4 /2 ->.2 r 0 most significant bit
2/ 2 -1 r O/
1/2 -0 r 1
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Signed Integers — Convert Decimal to Base-R

m Example: 6719 =7g_pis signed

= B) 67,,was positive, so done

= 1000011,

Can validate answer using
place value notation

35



Quick check:

For an 8-bit representation:
m Convert -100,, into a signed integer
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Signed Integers — Convert Decimal to Base-R

m Example: _10010=?8—bitsigned
A [-1004] =7,
least significant bit
NUM R Q REMd/
100 / 2 - 50 r
50 /2 —25 r 0 = 1100100,
25/ 2 512 r 1
12 /2 > 6 r 0
most significant bit
6 /2 > 3 r 0
3/2 -1 r 1/
1/2 - 0 r 1
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Signed Integers — Convert Decimal to Base-R

m Example: —10010="7 g_pis signed

= B) -100,, was negative, so perform negation
= zero extend 100101 to 8 bits

1100100, —» 01100100

= negation =10011100,
— flip bits: 01100100,
|
10011011, Can validate answer using

place value notation

— add 1: + 1,
10011100,
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Signed Integers — Convert Decimal to Base-R

m Be careful of range!
m Example:  —18310=7g_pit signed

= A) |—18310| =7 2 — 101101112

= B)-183,, was negative, so perform negation

= zero extend 10110111 to 8 bits // already done
= negation
— flip bits: 10110111, not -18310... WRONG!
y
01001000, -183,, is not in valid range
for 8-bit signed

01001001, = 734y
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Representation of Signed Integers

m Multiple possible ways:
= Sign magnitude
" Ones’ Complement
= Two’s Complement (what has been presented)

m Two’s Complement greatly simplifies addition &
subtraction in hardware
= We'll see why when we cover operations
= Generally the only method still used

40
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Representation of Signed Integers

m Why the name Two’s Complement?
= For a w-bit signed representation, we represent -x as 2% — x
= E.g.: consider the 8-bit representation of —374

28 = 256,,
219,,=11011011, (unsigned)
—37,, = 11011011, (signed)

4
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Data Representation in Memory

m Representing Text

42
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Representing Strings

m Stringsin C char S[o] = "18243";
= Represented by array of characters
= Each character encoded in ASCIl format Intel / Linux
= Standard 7-bit encoding of character set 0x31 1’
= Character “0” has code 0x30 038 ‘g’
= String should be null-terminated 0x32 Y
= Final character =0 0x34 "
= ASCII characters organized such that: -
= Numeric characters sequentially increase from 0x30 Ox33 3
— Digit i has code 0x30+i 0x00 tr:::‘

= Alphabetic characters sequentially increase in order
— Uppercase chars ‘A’ to ‘Z" are 0x41 to Ox5A
— Lowercase chars ‘A’ to ‘Z’ are 0x61 to Ox7A
= Control characters, like <RET>, <TAB>, <BKSPC>, are 0x00 to Ox1A
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Representlng Strlngs UTF-16 on Intel

m Limitations of ASCII 0x31 ‘q’
= 7-bit encoding limits set of characters to 27 = 128 0x00
= 8-bit extended ASCII exists, but still only 28 = 256 chars 0x38 g7
= Unable to represent most other languages in ASCII 0x00
m Answer: Unicode 0x32 97
= first 128 characters are ASCI| 0x00
= j.e. 2-byte Unicode for ‘4’: 0x34 -> 0x0034 0x34 "
= j.e. 4-byte Unicode for ‘T’: 0x54 -> 0x00000054 0x00
= UTF-8: 1-byte version // commonly used 0x33 g
= UTF-16: 2-byte version // commonly used 0x00
= allows 21 = 65,536 unique chars 0x00 null
= UTF-32: 4-byte version oxoo | term

= allows 232 = ~4 billion unique characters
" Unicode used in many more recent languages, like Java and Python

44
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String Representation Links

m ASCII

" http://www.ascii-code.com/

m Unicode
" http://unicode-table.com/en/

45
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Quick Check:

m Convert the following strings to ASCII-

char school[4] = “SLU”;

char name|[6] = “Frank”;
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Data Representation in Memory

m Representing Pointers

47
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What is a Pointer?

Recall:

m Memory is a contiguous array of individual bytes
= Consider a machine with 16-bit addresses

0x0000
0x0001
0x0002
0x0003
0x0004

48
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What is a Pointer?

Recall:

m Memory is a contiguous array of individual bytes
= Consider a machine with 16-bit addresses and 32-bit data

26 0x0000

3C 0x0001

00 0x0002

00 0x0003

unsigned X = 15398; //0x00003C26 0x0004

49



Saint Louis University

Pointer Representation

m Points to a location in memory

Suppose: 26 0xA244
00 O0xA246

unsigned X = 15398; //0x00003C26

00 [0xA247
unsigned *ptr = &X; //0xA244
m A pointer is a variable that holds the 0x44 | 0xB710
address of another variable oxA2 | oxB711
m Different compilers and machines assign 0xB712
different locations to objects 0xB713

50
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Endianness

m Recall that memory is byte-addressable
= Four bytes in a 32-bit integer, which order are they stored with?

Two ways to store: unsigned X = 15398; //0x00003C26

m Little Endian m Big Endian
= |east significant bits stored = Most significant bits stored
first in memory first in memory
26 0x0000 00 0x0000
3C 0x0001 00 0x0001
00 0x0002 26 0x0002
00 0x0003 3C 0x0003
0x0004 0x0004
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Quick Check

m Consider the string:
char S[6] = “HELLO”;

0x48 ‘H" OxACED

m Whatis S[0] ? 0x45 ‘e’ OXACEE
m What is &S[0] ? 0x4C ‘'  OxACEF
m What is S[3]? 0x4C ‘' OxACFO
s What is &S[3]? Ox4F | ‘O’ OxACF1

0x00 null OxACF2
term
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